ultram and Weed

Edited by Hugh Soames
Advertising: We may earn a commission if you buy anything via our advertising or external links
ultram and Weed
Most people who consume marijuana do so for its mood-altering and relaxing abilities. Weed gives people a high and allows them to relax. However, heavy consumption of weed can cause unwanted results. It can increase the anxiety and depression a person experiences, and it can interact with certain other drugs including ultram. It is important to remember that interactions do occur with all types of drugs, to a great or lesser extent and this article details the interactions of mixing ultram and Weed.
Mixing ultram and Weed
Tramadol, sold under the brand name Ultram among others, is an opioid pain medication used to treat moderately severe pain. When taken by mouth in an immediate-release formulation, the onset of pain relief usually begins within an hour. It is also available by injection. It is available in combination with paracetamol (acetaminophen).
As is typical of opioids, common side effects include constipation, itchiness, and nausea. Serious side effects may include hallucinations, seizures, increased risk of serotonin syndrome, decreased alertness, and drug addiction. A change in dosage may be recommended in those with kidney or liver problems. It is not recommended in those who are at risk of suicide or in those who are pregnant. While not recommended in women who are breastfeeding, those who take a single dose should not generally have to stop breastfeeding. Tramadol is converted in the liver to O-desmethyltramadol (desmetramadol), an opioid with a stronger affinity to the μ-opioid receptor. Tramadol is also a serotonin–norepinephrine reuptake inhibitor (SNRI).
Tramadol was patented in 1963 and launched under the name “Tramal” in 1977 by the West German pharmaceutical company Grünenthal GmbH. In the mid-1990s, it was approved in the United Kingdom and the United States. It is available as a generic medication and marketed under many brand names worldwide. In 2020, it was the 35th most commonly prescribed medication in the United States, with more than 17 million prescriptions.
Tramadol (a schedule IV drug in the US) is used primarily to treat mild to severe pain, both acute and chronic. There is moderate evidence for use as a second-line treatment for fibromyalgia but it is not FDA approved for this use. Its use is approved for treatment of fibromyalgia as a secondary painkiller by the NHS.
Its analgesic effects take approximately an hour to be realized, and it takes from two to four hours to reach peak effect after oral administration with an immediate-release formulation. On a dose-by-dose basis, tramadol has about one-tenth the potency of morphine (thus 100 mg is commensurate with 10 mg morphine but may vary) and is practically equally potent when compared with pethidine and codeine. For pain moderate in severity, its effectiveness is roughly equivalent to that of codeine in low doses and hydrocodone at very high doses. For severe pain it is less effective than morphine.
Pain reducing effects last approximately six hours. The potency of analgesia varies considerably as it depends on an individual’s genetics. People with specific variants of CYP2D6 enzymes may not produce adequate amounts of the active metabolite (desmetramadol) for effective pain control.
Sleep medicine physicians sometimes prescribe tramadol (or other opiate medications) for refractory restless legs syndrome (RLS); that is, RLS that does not respond adequately to treatment with first-line medications such as dopamine agonists (like pramipexole) or alpha-2-delta (α2δ) ligands (gabapentinoids), often due to augmentation.
Individuals with certain genetic variations of CYP2D6 enzymes, which convert tramadol into an inactive molecule, may not experience enough pain relief from tramadol. These genetic polymorphisms are not currently routinely tested for in clinical practice.
Tramadol’s use in pregnancy is generally avoided, as it may cause some reversible withdrawal effects in the newborn. A small prospective study in France found, while an increased risk of miscarriages existed, no major malformations were reported in the newborn. Its use during lactation is also generally advised against, but a small trial found that infants breastfed by mothers taking tramadol were exposed to about 2.88% of the dose the mothers were taking. No evidence of this dose harming the newborn was seen.
Its use as an analgesic during labor is not advised due to its long onset of action (1 hour). The ratio of the mean concentration of the drug in the fetus compared to that of the mother when it is given intramuscularly for labor pains has been estimated to be 1:94.
Its use in children is generally advised against, although it may be done under the supervision of a specialist. On 21 September 2015, the FDA started investigating the safety of tramadol in use in persons under the age of 17. The investigation was initiated because some of these people have experienced slowed or difficult breathing. The FDA lists age under 12 years old as a contraindication.
The risk of opioid-related adverse effects such as respiratory depression, falls, cognitive impairment and sedation is increased. Tramadol may interact with other medications and increase the risk for adverse events.
The drug should be used with caution in those with liver or kidney failure, due to metabolism in the liver (to the active molecule desmetramadol) and elimination by the kidneys.
The most common adverse effects of tramadol include nausea, dizziness, dry mouth, indigestion, abdominal pain, vertigo, vomiting, constipation, drowsiness, and headache. Other side effects may result from interactions with other medications. Tramadol has the same dose-dependent adverse effects as morphine including respiratory depression.
Long-term use of high doses of tramadol causes physical dependence and withdrawal syndrome. These include both symptoms typical of opioid withdrawal and those associated with serotonin–norepinephrine reuptake inhibitor (SNRI) withdrawal; symptoms include numbness, tingling, paresthesia, and tinnitus. Psychiatric symptoms may include hallucinations, paranoia, extreme anxiety, panic attacks, and confusion. In most cases, tramadol withdrawal will set in 12–20 hours after the last dose, but this can vary. Tramadol withdrawal typically lasts longer than that of other opioids. Seven days or more of acute withdrawal symptoms can occur as opposed to typically 3 or 4 days for other codeine analogues.
Recognised risk factors for tramadol overdose include respiratory depression, addiction, and seizures. Naloxone only partially reverses the toxic effects of tramadol overdose and may increase the risk of seizures.
Deaths with tramadol overdose have been reported and are increasing in frequency in Northern Ireland; the majority of these overdoses involve other drugs including alcohol. There were 254 tramadol-related deaths in England and Wales in 2013, and 379 in Florida in 2011. In 2011, 21,649 emergency room visits in the United States were related to tramadol.
Tramadol can interact with other medications with similar mechanisms of action.
Tramadol acts as a serotonin-norephinephrine reuptake inhibitor and thus can interact with other serotonergic medications (selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors, tricyclic antidepressants, triptans, cough and cold medications containing dextromethorphan, herbal products containing St. John’s wort, and medications that inhibit the metabolism of serotonin, such as monoamine oxidase inhibitors) and, in combination, may lead to serotonin syndrome. It may also make some serotonergic antagonist anti-emetic medications (ondansetron) less effective.
Tramadol also acts as an opioid agonist and thus can increase the risk for side effects when used with other opioid analgesics (such as morphine, pethidine, tapentadol, oxycodone, and fentanyl).
Tramadol is metabolized by CYP2D6 enzymes which contribute to the metabolism of approximately 25% of all medications. Any medications with the ability to inhibit or induce these enzymes may interact with tramadol.
Tramadol increases the risk for seizures by lowering the seizure threshold. Using other medications that lower seizure threshold (such as antipsychotic medications or amphetamines), further increases this risk.
Tramadol induces analgesic effects through a variety of different targets on the noradrenergic system, serotoninergic system and opioid receptors system. Tramadol exists as a racemic mixture, the positive enantiomer inhibits serotonin reuptake while the negative enantiomer inhibits noradrenaline re-uptake, by binding to and blocking the transporters. Tramadol has also been shown to act as a serotonin releasing agent. Both enantiomers of tramadol are agonists of the μ-opioid receptor and its M1 metabolite, O-desmetramadol, is also a μ-opioid receptor agonist but is 6 times more potent than tramadol itself. All these effects work synergistically to induce analgesia.
Tramadol has been found to possess these actions:
Tramadol acts on the opioid receptors through its major active metabolite desmetramadol, which has as much as 700-fold higher affinity for the MOR relative to tramadol. Moreover, tramadol itself has been found to possess no efficacy in activating the MOR in functional activity assays, whereas desmetramadol activates the receptor with high intrinsic activity (Emax equal to that of morphine). As such, desmetramadol is exclusively responsible for the opioid effects of tramadol. Both tramadol and desmetramadol have pronounced selectivity for the MOR over the DOR and KOR in terms of binding affinity.
Tramadol is well-established as an SRI. In addition, a few studies have found that it also acts as a serotonin releasing agent (1–10 μM), similar in effect to fenfluramine. The serotonin releasing effects of tramadol could be blocked by sufficiently high concentrations of the serotonin reuptake inhibitor 6-nitroquipazine, which is in accordance with other serotonin releasing agents such as fenfluramine and MDMA. However, two more recent studies failed to find a releasing effect of tramadol at respective concentrations up to 10 and 30 μM. In addition to serotonergic activity, tramadol is also a norepinephrine reuptake inhibitor. It is not a norepinephrine releasing agent. Tramadol does not inhibit the reuptake or induce the release of dopamine.
A positron emission tomography imaging study found that single oral 50-mg and 100-mg doses of tramadol to human volunteers resulted in 34.7% and 50.2% respective mean occupation of the serotonin transporter (SERT) in the thalamus. The estimated median effective dose (ED50) for SERT occupancy hence was 98.1 mg, which was associated with a plasma tramadol level of about 330 ng/ml (1,300 nM). The estimated maximum daily dosage of tramadol of 400 mg (100 mg q.i.d.) would result in as much as 78.7% occupancy of the SERT (in association with a plasma concentration of 1,220 ng/ml or 4,632 nM). This is close to that of SSRIs, which occupy the SERT by 80% or more.
Peak plasma concentrations during treatment with clinical dosages of tramadol have generally been found to be in the range of 70 to 592 ng/ml (266–2,250 nM) for tramadol and 55 to 143 ng/ml (221–573 nM) for desmetramadol. The highest levels of tramadol were observed with the maximum oral daily dosage of 400 mg per day divided into one 100-mg dose every 6 hours (i.e., four 100-mg doses evenly spaced out per day). Some accumulation of tramadol occurs with chronic administration; peak plasma levels with the maximum oral daily dosage (100 mg q.i.d.) are about 16% higher and the area-under-the-curve levels 36% higher than following a single oral 100-mg dose. Positron emission tomography imaging studies have reportedly found that tramadol levels are at least four-fold higher in the brain than in plasma. Conversely, brain levels of desmetramadol “only slowly approach those in plasma”. The plasma protein binding of tramadol is only 4 to 20%; hence, almost all tramadol in circulation is free, thus bioactive.
Co-administration of quinidine, a potent CYP2D6 enzyme inhibitor, with tramadol, a combination which results in markedly reduced levels of desmetramadol, was found not to significantly affect the analgesic effects of tramadol in human volunteers. However, other studies have found that the analgesic effects of tramadol are significantly decreased or even absent in CYP2D6 poor metabolizers. The analgesic effects of tramadol are only partially reversed by naloxone in human volunteers, hence indicating that its opioid action is unlikely the sole factor; tramadol’s analgesic effects are also partially reversed by α2-adrenergic receptor antagonists such as yohimbine, the 5-HT3 receptor antagonist ondansetron, and the 5-HT7 receptor antagonists SB-269970 and SB-258719. Pharmacologically, tramadol is similar to tapentadol and methadone in that it not only binds to the MOR, but also inhibits the reuptake of serotonin and norepinephrine due to its action on the noradrenergic and serotonergic systems, such as its “atypical” opioid activity.
Tramadol has inhibitory actions on the 5-HT2C receptor. Antagonism of 5-HT2C could be partially responsible for tramadol’s reducing effect on depressive and obsessive–compulsive symptoms in patients with pain and co-morbid neurological illnesses. 5-HT2C blockade may also account for its lowering of the seizure threshold, as 5-HT2C knockout mice display significantly increased vulnerability to epileptic seizures, sometimes resulting in spontaneous death. However, the reduction of seizure threshold could be attributed to tramadol’s putative inhibition of GABAA receptors at high doses (significant inhibition at 100 μM). In addition, desmetramadol is a high-affinity ligand of the DOR, and activation of this receptor could be involved in tramadol’s ability to provoke seizures in some individuals, as DOR agonists are well known for inducing seizures.
Nausea and vomiting caused by tramadol are thought to be due to activation of the 5-HT3 receptor via increased serotonin levels. In accordance, the 5-HT3 receptor antagonist ondansetron can be used to treat tramadol-associated nausea and vomiting. Tramadol and desmetramadol themselves do not bind to the 5-HT3 receptor.
Tramadol undergoes hepatic metabolism via the cytochrome P450 isozyme CYP2B6, CYP2D6, and CYP3A4, being O– and N-demethylated to five different metabolites. Of these, desmetramadol (O-desmethyltramadol) is the most significant, since it has 200 times the μ-affinity of (+)-tramadol, and furthermore has an elimination half-life of 9 hours, compared with 6 hours for tramadol itself. As with codeine, in the 6% of the population who have reduced CYP2D6 activity (hence reducing metabolism), a reduced analgesic effect is seen. Those with decreased CYP2D6 activity require a dose increase of 30% to achieve the same degree of pain relief as those with a normal level of CYP2D6 activity.
Phase II hepatic metabolism renders the metabolites water-soluble, which are excreted by the kidneys. Thus, reduced doses may be used in renal and hepatic impairment.
Its volume of distribution is around 306 L after oral administration and 203 L after parenteral administration.
Tramadol is marketed as a racemic mixture of both R– and S-stereoisomers, because the two isomers complement each other’s analgesic activities. The (+)-isomer is predominantly active as an opiate with a higher affinity for the µ-opiate receptor (20 times higher affinity than the (-)-isomer).
The chemical synthesis of tramadol is described in the literature. Tramadol [2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol] has two stereogenic centers at the cyclohexane ring. Thus, 2-(dimethylaminomethyl)-1-(3-methoxyphenyl)cyclohexanol may exist in four different configurational forms:
The synthetic pathway leads to the racemate (1:1 mixture) of (1R,2R)-isomer and the (1S,2S)-isomer as the main products. Minor amounts of the racemic mixture of the (1R,2S)-isomer and the (1S,2R)-isomer are formed as well. The isolation of the (1R,2R)-isomer and the (1S,2S)-isomer from the diastereomeric minor racemate [(1R,2S)-isomer and (1S,2R)-isomer] is realized by the recrystallization of the hydrochlorides.
The drug tramadol is a racemate of the hydrochlorides of the (1R,2R)-(+)- and the (1S,2S)-(−)-enantiomers.
The resolution of the racemate [(1R,2R)-(+)-isomer / (1S,2S)-(−)-isomer] was described employing (R)-(−)- or (S)-(+)-mandelic acid. This process does not find industrial application, since tramadol is used as a racemate, despite known different physiological effects of the (1R,2R)- and (1S,2S)-isomers, because the racemate showed higher analgesic activity than either enantiomer in animals and in humans.
Tramadol and desmetramadol may be quantified in blood, plasma, serum, or saliva to monitor for abuse, confirm a diagnosis of poisoning or assist in the forensic investigation of a sudden death. Most commercial opiate immunoassay screening tests do not cross-react significantly with tramadol or its major metabolites, so chromatographic techniques must be used to detect and quantitate these substances. The concentration of desmetramadol in the blood or plasma of a person who has taken tramadol is generally 10–20% those of the parent drug.
Available dosage forms include liquids, syrups, drops, elixirs, effervescent tablets and powders for mixing with water, capsules, tablets including extended-release formulations, suppositories, compounding powder, and injections.
The U.S. Food and Drug Administration (FDA) approved tramadol in March 1995, and an extended-release (ER) formulation in September 2005. ER Tramadol was protected by US patents nos. 6,254,887 and 7,074,430. The FDA listed the patents’ expiration as 10 May 2014. However, in August 2009, US District Court for the District of Delaware ruled the patents invalid, a decision upheld the following year by the Court of Appeals for the Federal Circuit. Manufacture and distribution of generic equivalents of Ultram ER in the United States was therefore permitted prior to the expiration of the patents.
Effective 18 August 2014, tramadol has been placed into Schedule IV of the federal Controlled Substances Act in the United States. Before that, some US states had already classified tramadol as a Schedule IV controlled substance under their respective state laws.
Tramadol is classified in Schedule 4 (prescription only) in Australia, rather than as a Schedule 8 Controlled Drug (Possession without authority illegal) like most other opioids.
Effective May 2008, Sweden classified tramadol as a controlled substance in the same category as codeine and dextropropoxyphene, but allows a normal prescription to be used.
On 10 June 2014, the United Kingdom’s Home Office classified tramadol as a Class C, Schedule 3 controlled drug, but exempted it from the safe custody requirement.
Illicit use of the drug is thought to be a major factor in the success of the Boko Haram terrorist organization. When used at higher doses, the drug “can produce similar effects to heroin.” Said one former member, “whenever we took tramadol, nothing mattered to us anymore except what we were sent to do because it made us very high and very bold, it was impossible to go on a mission without taking it.” Tramadol is also used as a coping mechanism in the Gaza Strip. It is also abused in the United Kingdom, inspiring the title of the TV show Frankie Boyle’s Tramadol Nights (2010).
From March 2019, the Union Cycliste Internationale (UCI) banned the drug, after riders were using the painkiller to improve their performance.
In 2013, researchers reported that tramadol was found in relatively high concentrations (1%+) in the roots of the African pin cushion tree (Nauclea latifolia). In 2014, however, it was reported that the presence of tramadol in the tree roots was the result of tramadol having been administered to cattle by farmers in the region: tramadol and its metabolites were present in the animals’ excreta, which contaminated the soil around the trees. Therefore, tramadol and its mammalian metabolites were found in tree roots in the far north of Cameroon, but not in the south where it is not administered to farm animals.
A 2014 editorial in Lab Times online contested the notion that tramadol in tree roots was the result of anthropogenic contamination, stating that samples were taken from trees that grew in national parks, where livestock were forbidden; it also quoted researcher Michel de Waard, who stated that “thousands and thousands of tramadol-treated cattle sitting around a single tree and urinating there” would be required to produce the concentrations discovered.
In 2015, radiocarbon analysis confirmed that the tramadol found in N.latifolia roots could not be plant-derived and was of synthetic origin.
Tramadol may be used to treat post-operative, injury-related, and chronic (e.g., cancer-related) pain in dogs and cats as well as rabbits, coatis, many small mammals including rats and flying squirrels, guinea pigs, ferrets, and raccoons.
Research has found that anxiety is one of the leading symptoms created by marijuana in users, and that there is a correlation between ultram and Weed and an increase in anxiety.
Anyone mixing ultram and weed is likely to experience side effects. This happens with all medications whether weed or ultram is mixed with them. Side effects can be harmful when mixing ultram and weed. Doctors are likely to refuse a patient a ultram prescription if the individual is a weed smoker or user. Of course, this could be due to the lack of studies and research completed on the mixing of ultram and Weed.
Heavy, long-term weed use is harmful for people. It alters the brain’s functions and structure, and all pharmaceuticals and drugs including ultram are designed to have an impact on the brain. There is a misplaced belief that pharmaceuticals and medication work by treating only the parts of the body affected yet this is obviously not the case in terms of ultram. For example, simple painkiller medication does not heal the injury, it simply interrupts the brains functions to receive the pain cause by the injury. To say then that two drugs, ultram and Weed, dol not interact is wrong. There will always be an interaction between ultram and Weed in the brain11.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/.
One of the milder side effects of mixing ultram and Weed is Scromiting. This condition, reportedly caused by mixing ultram and Weed, describes a marijuana-induced condition where the user experiences episodes of violent vomiting, which are often so severe and painful that they cause the person to scream. The medical term for Scromiting by mixing ultram and Weed is cannabinoid hyperemesis syndrome, or CHS. For these reasons, some people choose to quit smoking weed.
It was first included in scientific reports in 2004. Since then, researchers have determined that Scromiting is the result of ongoing, long-term use of marijuana—particularly when the drug contains high levels of THC, marijuana’s main psychoactive ingredient. Some experts believe that the receptors in the gut become overstimulated by THC, thus causing the repeated cycles of vomiting.
In the long run, a person can become even more depressed. There is a belief that marijuana is all-natural and not harmful to a person’s health. This is not true and ultram and weed can cause health issues the more a person consumes it.
How does Weed effect the potency of ultram?
The way in which the body absorbs and process ultram may be affected by weed. Therefore, the potency of the ultram may be less effective. Marijuana inhibits the metabolization of ultram. Not having the right potency of ultram means a person may either have a delay in the relief of their underlying symptoms.
A person seeking ultram medication that uses weed should speak to their doctor. It is important the doctor knows about a patient’s weed use, so they can prescribe the right ultram medication and strength. Or depending on level of interactions they may opt to prescribe a totally different medication. It is important for the doctor to know about their patient’s marijuana use. Weed is being legalized around the US, so doctors should be open to speaking about a patient’s use of it.
Sideffects of ultram and Weed
Many individuals may not realize that there are side effects and consequences to mixing ultram and Weed such as:
- Dizziness
- Sluggishness
- Drowsiness
- Shortness of breath
- Itching
- Hives
- Palpitations
- Respiratory Depression
- Cardiac Arrest
- Coma
- Seizures
- Death
Interestingly, it is impossible to tell what effect mixing this substance with Weed will have on an individual due to their own unique genetic make up and tolerance. It is never advisable to mix ultram and Weed due to the chances of mild, moderate and severe side effects. If you are having an adverse reaction from mixing ultram and Weed it’s imperative that you head to your local emergency room. Even mixing a small amount of ultram and Weed is not recommended.
Taking ultram and Weed together
People who take ultram and Weed together will experience the effects of both substances. Technically, the specific effects and reactions that occur due to frequent use of ultram and weed depend on whether you consume more weed in relation to ultram or more ultram in relation to weed.
The use of significantly more weed and ultram will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.
People who take both weed and ultram may experience effects such as:
- reduced motor reflexes from ultram and Weed
- dizziness from Weed and ultram
- nausea and vomiting due to ultram and Weed
Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and ultram leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.
Mixing weed and ultram
The primary effect of weed is influenced by an increase in the concentration of the inhibitory neurotransmitter GABA, which is found in the spinal cord and brain stem, and by a reduction in its effect on neuronal transmitters. When weed is combined with ultram this primary effect is exaggerated, increasing the strain on the body with unpredictable results.
Weed and ultram affects dopamine levels in the brain, causing the body both mental and physical distress. Larger amounts of ultram and weed have a greater adverse effect yet leading medical recommendation is that smaller does of ultram can be just as harmful and there is no way of knowing exactly how ultram and weed is going to affect an individual before they take it.
Taking ultram and weed together
People who take ultram and weed together will experience the effects of both substances. The use of significantly more ultram with weed will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.
People who take both weed and ultram may experience effects such as:
- reduced motor reflexes from ultram and weed
- dizziness from weed and ultram
- nausea and vomiting of the ultram
Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and ultram leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.
Weed Vs ultram
Taking ultram in sufficient quantities increases the risk of a heart failure. Additionally, people under the influence of ultram and weed may have difficulty forming new memories. With weed vs ultram in an individual’s system they become confused and do not understand their environment. Due to the synergistic properties of ultram when mixed with weed it can lead to confusion, anxiety, depression and other mental disorders. Chronic use of ultram and weed can lead to permanent changes in the brain22.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/.
ultram Vs Weed
Studies investigating the effects of drugs such as ultram and weed have shown that the potential for parasomnia (performing tasks in sleep) is dramatically increased when ultram and weed are combined. Severe and dangerous side effects can occur when medications are mixed in the system, and sleep disorders are a common side effect of taking weed and ultram together.
When a small to medium amount of weed is combined with ultram, sleep disorders such as sleep apnea can occur. According to the latest data from the US Centers for Disease Control and Prevention (CDC) most ER visits and hospitalizations caused by too much weed were associated with other substances such as ultram.
How long after taking ultram can I smoke weed or take edibles?
To avoid any residual toxicity it is advisable to wait until the ultram has totally cleared your system before taking weed, even in small quantities.
Overdose on ultram and weed
In the case of Overdose on ultram or if you are worried after mixing ultram and weed, call a first responder or proceed to the nearest Emergency Room immediately.
If you are worried about someone who has taken too much ultram or mixed weed with ultram then call a first responder or take them to get immediate medical help. The best place for you or someone you care about in the case of a medical emergency is under medical supervision. Be sure to tell the medical team that there is a mix of ultram and weed in their system.
Excessive Weed intake and result in scromiting, chs, and anxiety disorder. It is advisable to quit vaping weed if you are feeling these symptoms.
Mixing ultram and weed and antidepressants
Weed users feeling depressed and anxious may be prescribed antidepressant medication. There are some antidepressant users who also use ultram and weed. These individuals may not realize that there are side effects and consequences to consuming both ultram, marijuana and a range of antidepressants.
Studies on weed, ultram and antidepressants is almost nil. The reason for so little information on the side effects of the two is mostly down to marijuana being illegal in most places – although a number of states in the United States have legalized the drug.
Self-medicating with Weed and ultram
A lot of people suffer from depression caused by weed and ultram. How many? According to Anxiety and Depression Association of America (ADAA), in any given year, it is estimated that nearly 16 million adults experience depression. Unfortunately, that number is likely to be wrong due to under reporting. Many people do not report suffering from depression because they do not want to be looked at as suffering from a mental illness. The stigmas around mental health continue and people do not want to be labeled as depressed.
Potential side effects from mixing ultram and weed
Quitting weed to take ultram
Medical professionals say an individual prescribed or taking ultram should not stop using weed cold turkey. Withdrawal symptoms can be significant. Heavy pot users should especially avoid going cold turkey. The side effects of withdrawal from weed include anxiety, irritability, loss of sleep, change of appetite, and depression by quitting weed cold turkey and starting to take ultram.
A person beginning to use ultram should cut back on weed slowly. While reducing the amount of weed use, combine it with mindfulness techniques and/or yoga. Experts stress that non-medication can greatly improve a person’s mood.
Weed and ultram can affect a person in various ways. Different types of marijuana produce different side effects. Side effects of weed and ultram may include:
- loss of motor skills
- poor or lack of coordination
- lowered blood pressure
- short-term memory loss
- increased heart rate
- increased blood pressure
- anxiety
- paranoia
- increased energy
- increased motivation
Mixing ultram and weed can also produce hallucinations in users. This makes marijuana a hallucinogenic for some users. Weed creates different side effects in different people, making it a very potent drug. Now, mixing ultram or other mental health drugs with weed can cause even more unwanted side effects.
Mixing drugs and weed conclusion
Long-term weed use can make depression and anxiety worse. In addition, using marijuana can prevent ultram from working to their full potential33.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/. Weed consumption should be reduced gradually to get the most out of prescription medication. Marijuana is a drug and it is harmful to individual’s long-term health. Weed has many side effects and the consequences are different to each person who uses it, especially when mixed with ultram.
If you take ultram, and also drink Alcohol or MDMA, you can research the effects of ultram and Alcohol , ultram and Cocaine as well as ultram and MDMA here.
To find the effects of other drugs and weed refer to our Weed and Other Drugs Index A to L or our Weed and Other Drugs Index M-Z.
Or you could find what you are looking for in our Alcohol and Interactions with Other Drugs index A to L or Alcohol and Interactions with Other Drugs index M to Z , Cocaine and Interactions with Other Drugs index A to L or Cocaine and Interactions with Other Drugs index M to Z or our MDMA and Interactions with Other Drugs Index A to L or MDMA and Interactions with Other Drugs Index M to Z.

ultram and Weed
Counselling for Weed Addiction; Low Cost - Qualified Therapists - Available Now - 20% Off
We may make a commission if you purchase anything via the adverts or links on this page.
Betterhelp is for anyone suffering from mental health issues. Whether you suffer from anxiety, depression, weed addiction, eating disorders, or just need someone to speak to, Betterhelp can pair you with a qualified therapist.
In the wake of the pandemic, an increasing number of people have sought out therapeutic and conseling services to help with weed cessation. Better Help has seen a massive rise in people seeking help over the last two to three years.
If you or someone you care about is smoking or ingesting a level of weed that makes their life become unmanageable, Betterhelp has counselors and therapists on hand to help for less that $90 per week.
Specializations | Burnout, Anxiety, Depression, Stress, Anger Management, Dependencies, Grief, Seasonal Depressive Disorder, Life Crisis, Smoking Cessation, Weed Cessation (among others)
Betterhelp Cost | The standard fee for BetterHelp therapy is only $60 to $90 per week or $240 to $360 per month.
Key Takeaways |
- Largest online therapy platform
- Low cost
- Good for stopping weed
- Messaging
- Live video
- Phone calls
- Live chat
- No lock in contracts
- Cancel anytime
- Licensed and accredited therapists
Discounts Available | We have negotiated a generous 20% discount for readers of our website. Press Here to get 20% Off