allergies and Weed

{Fulldrug} and Weed

Authored by Pin Ng PhD

Edited by Hugh Soames

Advertising: We may earn a commission if you buy anything via our advertising or external links

allergies and Weed

 

Most people who consume marijuana do so for its mood-altering and relaxing abilities. Weed gives people a high and allows them to relax. However, heavy consumption of weed can cause unwanted results. It can increase the anxiety and depression a person experiences, and it can interact with certain other drugs including allergies. It is important to remember that interactions do occur with all types of drugs, to a great or lesser extent and this article details the interactions of mixing allergies and Weed.

 

Mixing allergies and Weed

 

Allergies, also known as allergic diseases, are various conditions caused by hypersensitivity of the immune system to typically harmless substances in the environment. These diseases include hay fever, food allergies, atopic dermatitis, allergic asthma, and anaphylaxis. Symptoms may include red eyes, an itchy rash, sneezing, coughing, a runny nose, shortness of breath, or swelling. Note that food intolerances and food poisoning are separate conditions.

Common allergens include pollen and certain foods. Metals and other substances may also cause such problems. Food, insect stings, and medications are common causes of severe reactions. Their development is due to both genetic and environmental factors. The underlying mechanism involves immunoglobulin E antibodies (IgE), part of the body’s immune system, binding to an allergen and then to a receptor on mast cells or basophils where it triggers the release of inflammatory chemicals such as histamine. Diagnosis is typically based on a person’s medical history. Further testing of the skin or blood may be useful in certain cases. Positive tests, however, may not necessarily mean there is a significant allergy to the substance in question.

Early exposure of children to potential allergens may be protective. Treatments for allergies include avoidance of known allergens and the use of medications such as steroids and antihistamines. In severe reactions, injectable adrenaline (epinephrine) is recommended. Allergen immunotherapy, which gradually exposes people to larger and larger amounts of allergen, is useful for some types of allergies such as hay fever and reactions to insect bites. Its use in food allergies is unclear.

Allergies are common. In the developed world, about 20% of people are affected by allergic rhinitis, about 6% of people have at least one food allergy, and about 20% have or have had atopic dermatitis at some point in time. Depending on the country, about 1–18% of people have asthma. Anaphylaxis occurs in between 0.05–2% of people. Rates of many allergic diseases appear to be increasing. The word “allergy” was first used by Clemens von Pirquet in 1906.

Many allergens such as dust or pollen are airborne particles. In these cases, symptoms arise in areas in contact with air, such as the eyes, nose, and lungs. For instance, allergic rhinitis, also known as hay fever, causes irritation of the nose, sneezing, itching, and redness of the eyes. Inhaled allergens can also lead to increased production of mucus in the lungs, shortness of breath, coughing, and wheezing.

Aside from these ambient allergens, allergic reactions can result from foods, insect stings, and reactions to medications like aspirin and antibiotics such as penicillin. Symptoms of food allergy include abdominal pain, bloating, vomiting, diarrhea, itchy skin, and hives. Food allergies rarely cause respiratory (asthmatic) reactions, or rhinitis. Insect stings, food, antibiotics, and certain medicines may produce a systemic allergic response that is also called anaphylaxis; multiple organ systems can be affected, including the digestive system, the respiratory system, and the circulatory system. Depending on the severity, anaphylaxis can include skin reactions, bronchoconstriction, swelling, low blood pressure, coma, and death. This type of reaction can be triggered suddenly, or the onset can be delayed. The nature of anaphylaxis is such that the reaction can seem to be subsiding but may recur throughout a period of time.

Substances that come into contact with the skin, such as latex, are also common causes of allergic reactions, known as contact dermatitis or eczema. Skin allergies frequently cause rashes, or swelling and inflammation within the skin, in what is known as a “weal and flare” reaction characteristic of hives and angioedema.

With insect stings, a large local reaction may occur in the form of an area of skin redness greater than 10 cm in size that can last one to two days. This reaction may also occur after immunotherapy.

Risk factors for allergies can be placed in two broad categories, namely host and environmental factors. Host factors include heredity, sex, race, and age, with heredity being by far the most significant. However, there has been a recent increase in the incidence of allergic disorders that cannot be explained by genetic factors alone. Four major environmental candidates are alterations in exposure to infectious diseases during early childhood, environmental pollution, allergen levels, and dietary changes.

Dust mite allergy, also known as house dust allergy, is a sensitization and allergic reaction to the droppings of house dust mites. The allergy is common and can trigger allergic reactions such as asthma, eczema, or itching. It is the manifestation of parasitosis. The mite’s gut contains potent digestive enzymes (notably peptidase 1) that persist in their feces and are major inducers of allergic reactions such as wheezing. The mite’s exoskeleton can also contribute to allergic reactions. Unlike scabies mites or skin follicle mites, house dust mites do not burrow under the skin and are not parasitic.

A wide variety of foods can cause allergic reactions, but 90% of allergic responses to foods are caused by cow’s milk, soy, eggs, wheat, peanuts, tree nuts, fish, and shellfish. Other food allergies, affecting less than 1 person per 10,000 population, may be considered “rare”. The use of hydrolyzed milk baby formula versus standard milk baby formula does not appear to affect the risk.

The most common food allergy in the US population is a sensitivity to crustacea. Although peanut allergies are notorious for their severity, peanut allergies are not the most common food allergy in adults or children. Severe or life-threatening reactions may be triggered by other allergens and are more common when combined with asthma.

Rates of allergies differ between adults and children. Children can sometimes outgrow peanut allergies. Egg allergies affect one to two percent of children but are outgrown by about two-thirds of children by the age of 5. The sensitivity is usually to proteins in the white, rather than the yolk.

Milk-protein allergies are most common in children. Approximately 60% of milk-protein reactions are immunoglobulin E-mediated, with the remaining usually attributable to inflammation of the colon. Some people are unable to tolerate milk from goats or sheep as well as from cows, and many are also unable to tolerate dairy products such as cheese. Roughly 10% of children with a milk allergy will have a reaction to beef. Beef contains small amounts of proteins that are present in greater abundance in cow’s milk. Lactose intolerance, a common reaction to milk, is not a form of allergy at all, but due to the absence of an enzyme in the digestive tract.[citation needed]

Those with tree nut allergies may be allergic to one or to many tree nuts, including pecans, pistachios, pine nuts, and walnuts. In addition, seeds, including sesame seeds and poppy seeds, contain oils in which protein is present, which may elicit an allergic reaction.

Allergens can be transferred from one food to another through genetic engineering; however genetic modification can also remove allergens. Little research has been done on the natural variation of allergen concentrations in unmodified crops.

Latex can trigger an IgE-mediated cutaneous, respiratory, and systemic reaction. The prevalence of latex allergy in the general population is believed to be less than one percent. In a hospital study, 1 in 800 surgical patients (0.125 percent) reported latex sensitivity, although the sensitivity among healthcare workers is higher, between seven and ten percent. Researchers attribute this higher level to the exposure of healthcare workers to areas with significant airborne latex allergens, such as operating rooms, intensive-care units, and dental suites. These latex-rich environments may sensitize healthcare workers who regularly inhale allergenic proteins.

The most prevalent response to latex is an allergic contact dermatitis, a delayed hypersensitive reaction appearing as dry, crusted lesions. This reaction usually lasts 48–96 hours. Sweating or rubbing the area under the glove aggravates the lesions, possibly leading to ulcerations. Anaphylactic reactions occur most often in sensitive patients who have been exposed to a surgeon’s latex gloves during abdominal surgery, but other mucosal exposures, such as dental procedures, can also produce systemic reactions.

Latex and banana sensitivity may cross-react. Furthermore, those with latex allergy may also have sensitivities to avocado, kiwifruit, and chestnut. These people often have perioral itching and local urticaria. Only occasionally have these food-induced allergies induced systemic responses. Researchers suspect that the cross-reactivity of latex with banana, avocado, kiwifruit, and chestnut occurs because latex proteins are structurally homologous with some other plant proteins.

About 10% of people report that they are allergic to penicillin; however, of that 10%, 90% turn out not to be. Serious allergies only occur in about 0.03%.

Typically, insects which generate allergic responses are either stinging insects (wasps, bees, hornets and ants) or biting insects (mosquitoes, ticks). Stinging insects inject venom into their victims, whilst biting insects normally introduce anti-coagulants.

Another non-food protein reaction, urushiol-induced contact dermatitis, originates after contact with poison ivy, eastern poison oak, western poison oak, or poison sumac. Urushiol, which is not itself a protein, acts as a hapten and chemically reacts with, binds to, and changes the shape of integral membrane proteins on exposed skin cells. The immune system does not recognize the affected cells as normal parts of the body, causing a T-cell-mediated immune response. Of these poisonous plants, sumac is the most virulent. The resulting dermatological response to the reaction between urushiol and membrane proteins includes redness, swelling, papules, vesicles, blisters, and streaking.

Estimates vary on the percentage of the population that will have an immune system response. Approximately 25 percent of the population will have a strong allergic response to urushiol. In general, approximately 80 percent to 90 percent of adults will develop a rash if they are exposed to .0050 milligrams (7.7×10 gr) of purified urushiol, but some people are so sensitive that it takes only a molecular trace on the skin to initiate an allergic reaction.

Allergic diseases are strongly familial: identical twins are likely to have the same allergic diseases about 70% of the time; the same allergy occurs about 40% of the time in non-identical twins. Allergic parents are more likely to have allergic children, and those children’s allergies are likely to be more severe than those in children of non-allergic parents. Some allergies, however, are not consistent along genealogies; parents who are allergic to peanuts may have children who are allergic to ragweed. The likelihood of developing allergies is inherited and related to an irregularity in the immune system, but the specific allergen is not.

The risk of allergic sensitization and the development of allergies varies with age, with young children most at risk. Several studies have shown that IgE levels are highest in childhood and fall rapidly between the ages of 10 and 30 years. The peak prevalence of hay fever is highest in children and young adults and the incidence of asthma is highest in children under 10.

Ethnicity may play a role in some allergies; however, racial factors have been difficult to separate from environmental influences and changes due to migration. It has been suggested that different genetic loci are responsible for asthma, to be specific, in people of European, Hispanic, Asian, and African origins.

Allergic diseases are caused by inappropriate immunological responses to harmless antigens driven by a TH2-mediated immune response. Many bacteria and viruses elicit a TH1-mediated immune response, which down-regulates TH2 responses. The first proposed mechanism of action of the hygiene hypothesis was that insufficient stimulation of the TH1 arm of the immune system leads to an overactive TH2 arm, which in turn leads to allergic disease. In other words, individuals living in too sterile an environment are not exposed to enough pathogens to keep the immune system busy. Since our bodies evolved to deal with a certain level of such pathogens, when they are not exposed to this level, the immune system will attack harmless antigens, and thus normally benign microbial objects—like pollen—will trigger an immune response.

The hygiene hypothesis was developed to explain the observation that hay fever and eczema, both allergic diseases, were less common in children from larger families, which were, it is presumed, exposed to more infectious agents through their siblings, than in children from families with only one child. The hygiene hypothesis has been extensively investigated by immunologists and epidemiologists and has become an important theoretical framework for the study of allergic disorders. It is used to explain the increase in allergic diseases that have been seen since industrialization, and the higher incidence of allergic diseases in more developed countries. The hygiene hypothesis has now expanded to include exposure to symbiotic bacteria and parasites as important modulators of immune system development, along with infectious agents.

Epidemiological data support the hygiene hypothesis. Studies have shown that various immunological and autoimmune diseases are much less common in the developing world than the industrialized world, and that immigrants to the industrialized world from the developing world increasingly develop immunological disorders in relation to the length of time since arrival in the industrialized world. Longitudinal studies in the third world demonstrate an increase in immunological disorders as a country grows more affluent and, it is presumed, cleaner. The use of antibiotics in the first year of life has been linked to asthma and other allergic diseases. The use of antibacterial cleaning products has also been associated with higher incidence of asthma, as has birth by Caesarean section rather than vaginal birth.

Chronic stress can aggravate allergic conditions. This has been attributed to a T helper 2 (TH2)-predominant response driven by suppression of interleukin 12 by both the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. Stress management in highly susceptible individuals may improve symptoms.

Allergic diseases are more common in industrialized countries than in countries that are more traditional or agricultural, and there is a higher rate of allergic disease in urban populations versus rural populations, although these differences are becoming less defined. Historically, the trees planted in urban areas were predominantly male to prevent litter from seeds and fruits, but the high ratio of male trees causes high pollen counts, a phenomenon that horticulturist Tom Ogren has called “botanical sexism”.

Alterations in exposure to microorganisms is another plausible explanation, at present, for the increase in atopic allergy. Endotoxin exposure reduces release of inflammatory cytokines such as TNF-α, IFNγ, interleukin-10, and interleukin-12 from white blood cells (leukocytes) that circulate in the blood. Certain microbe-sensing proteins, known as Toll-like receptors, found on the surface of cells in the body are also thought to be involved in these processes.

Gutworms and similar parasites are present in untreated drinking water in developing countries, and were present in the water of developed countries until the routine chlorination and purification of drinking water supplies. Recent research has shown that some common parasites, such as intestinal worms (e.g., hookworms), secrete chemicals into the gut wall (and, hence, the bloodstream) that suppress the immune system and prevent the body from attacking the parasite. This gives rise to a new slant on the hygiene hypothesis theory—that co-evolution of humans and parasites has led to an immune system that functions correctly only in the presence of the parasites. Without them, the immune system becomes unbalanced and oversensitive. In particular, research suggests that allergies may coincide with the delayed establishment of gut flora in infants. However, the research to support this theory is conflicting, with some studies performed in China and Ethiopia showing an increase in allergy in people infected with intestinal worms. Clinical trials have been initiated to test the effectiveness of certain worms in treating some allergies. It may be that the term ‘parasite’ could turn out to be inappropriate, and in fact a hitherto unsuspected symbiosis is at work. For more information on this topic, see Helminthic therapy.

In the initial stages of allergy, a type I hypersensitivity reaction against an allergen encountered for the first time and presented by a professional antigen-presenting cell causes a response in a type of immune cell called a TH2 lymphocyte, a subset of T cells that produce a cytokine called interleukin-4 (IL-4). These TH2 cells interact with other lymphocytes called B cells, whose role is production of antibodies. Coupled with signals provided by IL-4, this interaction stimulates the B cell to begin production of a large amount of a particular type of antibody known as IgE. Secreted IgE circulates in the blood and binds to an IgE-specific receptor (a kind of Fc receptor called FcεRI) on the surface of other kinds of immune cells called mast cells and basophils, which are both involved in the acute inflammatory response. The IgE-coated cells, at this stage, are sensitized to the allergen.

If later exposure to the same allergen occurs, the allergen can bind to the IgE molecules held on the surface of the mast cells or basophils. Cross-linking of the IgE and Fc receptors occurs when more than one IgE-receptor complex interacts with the same allergenic molecule and activates the sensitized cell. Activated mast cells and basophils undergo a process called degranulation, during which they release histamine and other inflammatory chemical mediators (cytokines, interleukins, leukotrienes, and prostaglandins) from their granules into the surrounding tissue causing several systemic effects, such as vasodilation, mucous secretion, nerve stimulation, and smooth muscle contraction. This results in rhinorrhea, itchiness, dyspnea, and anaphylaxis. Depending on the individual, allergen, and mode of introduction, the symptoms can be system-wide (classical anaphylaxis) or localized to specific body systems. Asthma is localized to the respiratory system and eczema is localized to the dermis.

After the chemical mediators of the acute response subside, late-phase responses can often occur. This is due to the migration of other leukocytes such as neutrophils, lymphocytes, eosinophils, and macrophages to the initial site. The reaction is usually seen 2–24 hours after the original reaction. Cytokines from mast cells may play a role in the persistence of long-term effects. Late-phase responses seen in asthma are slightly different from those seen in other allergic responses, although they are still caused by release of mediators from eosinophils and are still dependent on activity of TH2 cells.

Although allergic contact dermatitis is termed an “allergic” reaction (which usually refers to type I hypersensitivity), its pathophysiology involves a reaction that more correctly corresponds to a type IV hypersensitivity reaction. In type IV hypersensitivity, there is activation of certain types of T cells (CD8+) that destroy target cells on contact, as well as activated macrophages that produce hydrolytic enzymes.[citation needed]

Effective management of allergic diseases relies on the ability to make an accurate diagnosis. Allergy testing can help confirm or rule out allergies. Correct diagnosis, counseling, and avoidance advice based on valid allergy test results reduce the incidence of symptoms and need for medications, and improve quality of life. To assess the presence of allergen-specific IgE antibodies, two different methods can be used: a skin prick test, or an allergy blood test. Both methods are recommended, and they have similar diagnostic value.

Skin prick tests and blood tests are equally cost-effective, and health economic evidence shows that both tests were cost-effective compared with no test. Early and more accurate diagnoses save cost due to reduced consultations, referrals to secondary care, misdiagnosis, and emergency admissions.

Allergy undergoes dynamic changes over time. Regular allergy testing of relevant allergens provides information on if and how patient management can be changed to improve health and quality of life. Annual testing is often the practice for determining whether allergy to milk, egg, soy, and wheat have been outgrown, and the testing interval is extended to 2–3 years for allergy to peanut, tree nuts, fish, and crustacean shellfish. Results of follow-up testing can guide decision-making regarding whether and when it is safe to introduce or re-introduce allergenic food into the diet.

Skin testing is also known as “puncture testing” and “prick testing” due to the series of tiny punctures or pricks made into the patient’s skin. Tiny amounts of suspected allergens and/or their extracts (e.g., pollen, grass, mite proteins, peanut extract) are introduced to sites on the skin marked with pen or dye (the ink/dye should be carefully selected, lest it cause an allergic response itself). A small plastic or metal device is used to puncture or prick the skin. Sometimes, the allergens are injected “intradermally” into the patient’s skin, with a needle and syringe. Common areas for testing include the inside forearm and the back.

If the patient is allergic to the substance, then a visible inflammatory reaction will usually occur within 30 minutes. This response will range from slight reddening of the skin to a full-blown hive (called “wheal and flare”) in more sensitive patients similar to a mosquito bite. Interpretation of the results of the skin prick test is normally done by allergists on a scale of severity, with +/− meaning borderline reactivity, and 4+ being a large reaction. Increasingly, allergists are measuring and recording the diameter of the wheal and flare reaction. Interpretation by well-trained allergists is often guided by relevant literature. Some patients may believe they have determined their own allergic sensitivity from observation, but a skin test has been shown to be much better than patient observation to detect allergy.

If a serious life-threatening anaphylactic reaction has brought a patient in for evaluation, some allergists will prefer an initial blood test prior to performing the skin prick test. Skin tests may not be an option if the patient has widespread skin disease or has taken antihistamines in the last several days.

Patch testing is a method used to determine if a specific substance causes allergic inflammation of the skin. It tests for delayed reactions. It is used to help ascertain the cause of skin contact allergy or contact dermatitis. Adhesive patches, usually treated with several common allergic chemicals or skin sensitizers, are applied to the back. The skin is then examined for possible local reactions at least twice, usually at 48 hours after application of the patch, and again two or three days later.

An allergy blood test is quick and simple and can be ordered by a licensed health care provider (e.g., an allergy specialist) or general practitioner. Unlike skin-prick testing, a blood test can be performed irrespective of age, skin condition, medication, symptom, disease activity, and pregnancy. Adults and children of any age can get an allergy blood test. For babies and very young children, a single needle stick for allergy blood testing is often gentler than several skin pricks.

An allergy blood test is available through most laboratories. A sample of the patient’s blood is sent to a laboratory for analysis, and the results are sent back a few days later. Multiple allergens can be detected with a single blood sample. Allergy blood tests are very safe since the person is not exposed to any allergens during the testing procedure.

The test measures the concentration of specific IgE antibodies in the blood. Quantitative IgE test results increase the possibility of ranking how different substances may affect symptoms. A rule of thumb is that the higher the IgE antibody value, the greater the likelihood of symptoms. Allergens found at low levels that today do not result in symptoms cannot help predict future symptom development. The quantitative allergy blood result can help determine what a patient is allergic to, help predict and follow the disease development, estimate the risk of a severe reaction, and explain cross-reactivity.

A low total IgE level is not adequate to rule out sensitization to commonly inhaled allergens. Statistical methods, such as ROC curves, predictive value calculations, and likelihood ratios have been used to examine the relationship of various testing methods to each other. These methods have shown that patients with a high total IgE have a high probability of allergic sensitization, but further investigation with allergy tests for specific IgE antibodies for a carefully chosen of allergens is often warranted.

Laboratory methods to measure specific IgE antibodies for allergy testing include enzyme-linked immunosorbent assay (ELISA, or EIA), radioallergosorbent test (RAST) and fluorescent enzyme immunoassay (FEIA).

Challenge testing: Challenge testing is when tiny amounts of a suspected allergen are introduced to the body orally, through inhalation, or via other routes. Except for testing food and medication allergies, challenges are rarely performed. When this type of testing is chosen, it must be closely supervised by an allergist.

Elimination/challenge tests: This testing method is used most often with foods or medicines. A patient with a suspected allergen is instructed to modify his diet to totally avoid that allergen for a set time. If the patient experiences significant improvement, he may then be “challenged” by reintroducing the allergen, to see if symptoms are reproduced.

Unreliable tests: There are other types of allergy testing methods that are unreliable, including applied kinesiology (allergy testing through muscle relaxation), cytotoxicity testing, urine autoinjection, skin titration (Rinkel method), and provocative and neutralization (subcutaneous) testing or sublingual provocation.

Before a diagnosis of allergic disease can be confirmed, other plausible causes of the presenting symptoms should be considered. Vasomotor rhinitis, for example, is one of many illnesses that share symptoms with allergic rhinitis, underscoring the need for professional differential diagnosis. Once a diagnosis of asthma, rhinitis, anaphylaxis, or other allergic disease has been made, there are several methods for discovering the causative agent of that allergy.

Giving peanut products early may decrease the risk of allergies while only breastfeeding during at least the first few months of life may decrease the risk of dermatitis. There is no good evidence that a mother’s diet during pregnancy or breastfeeding affects the risk of allergies, nor is there evidence that delayed introduction of certain foods is useful. Early exposure to potential allergens may actually be protective.

Fish oil supplementation during pregnancy is associated with a lower risk. Probiotic supplements during pregnancy or infancy may help to prevent atopic dermatitis.

Management of allergies typically involves avoiding the allergy trigger and taking medications to improve the symptoms. Allergen immunotherapy may be useful for some types of allergies.

Several medications may be used to block the action of allergic mediators, or to prevent activation of cells and degranulation processes. These include antihistamines, glucocorticoids, epinephrine (adrenaline), mast cell stabilizers, and antileukotriene agents are common treatments of allergic diseases. Anticholinergics, decongestants, and other compounds thought to impair eosinophil chemotaxis are also commonly used. Although rare, the severity of anaphylaxis often requires epinephrine injection, and where medical care is unavailable, a device known as an epinephrine autoinjector may be used.

Allergen immunotherapy is useful for environmental allergies, allergies to insect bites, and asthma. Its benefit for food allergies is unclear and thus not recommended. Immunotherapy involves exposing people to larger and larger amounts of allergen in an effort to change the immune system’s response.

Meta-analyses have found that injections of allergens under the skin is effective in the treatment in allergic rhinitis in children and in asthma. The benefits may last for years after treatment is stopped. It is generally safe and effective for allergic rhinitis and conjunctivitis, allergic forms of asthma, and stinging insects.

To a lesser extent, the evidence also supports the use of sublingual immunotherapy for rhinitis and asthma. For seasonal allergies the benefit is small. In this form the allergen is given under the tongue and people often prefer it to injections. Immunotherapy is not recommended as a stand-alone treatment for asthma.

An experimental treatment, enzyme potentiated desensitization (EPD), has been tried for decades but is not generally accepted as effective. EPD uses dilutions of allergen and an enzyme, beta-glucuronidase, to which T-regulatory lymphocytes are supposed to respond by favoring desensitization, or down-regulation, rather than sensitization. EPD has also been tried for the treatment of autoimmune diseases, but evidence does not show effectiveness.

A review found no effectiveness of homeopathic treatments and no difference compared with placebo. The authors concluded that based on rigorous clinical trials of all types of homeopathy for childhood and adolescence ailments, there is no convincing evidence that supports the use of homeopathic treatments.

According to the National Center for Complementary and Integrative Health, U.S., the evidence is relatively strong that saline nasal irrigation and butterbur are effective, when compared to other alternative medicine treatments, for which the scientific evidence is weak, negative, or nonexistent, such as honey, acupuncture, omega 3’s, probiotics, astragalus, capsaicin, grape seed extract, Pycnogenol, quercetin, spirulina, stinging nettle, tinospora, or guduchi.

The allergic diseases—hay fever and asthma—have increased in the Western world over the past 2–3 decades. Increases in allergic asthma and other atopic disorders in industrialized nations, it is estimated, began in the 1960s and 1970s, with further increases occurring during the 1980s and 1990s, although some suggest that a steady rise in sensitization has been occurring since the 1920s. The number of new cases per year of atopy in developing countries has, in general, remained much lower.

Although genetic factors govern susceptibility to atopic disease, increases in atopy have occurred within too short a period to be explained by a genetic change in the population, thus pointing to environmental or lifestyle changes. Several hypotheses have been identified to explain this increased rate. Increased exposure to perennial allergens may be due to housing changes and increased time spent indoors, and a decreased activation of a common immune control mechanism may be caused by changes in cleanliness or hygiene, and exacerbated by dietary changes, obesity, and decline in physical exercise. The hygiene hypothesis maintains that high living standards and hygienic conditions exposes children to fewer infections. It is thought that reduced bacterial and viral infections early in life direct the maturing immune system away from TH1 type responses, leading to unrestrained TH2 responses that allow for an increase in allergy.

Changes in rates and types of infection alone, however, have been unable to explain the observed increase in allergic disease, and recent evidence has focused attention on the importance of the gastrointestinal microbial environment. Evidence has shown that exposure to food and fecal-oral pathogens, such as hepatitis A, Toxoplasma gondii, and Helicobacter pylori (which also tend to be more prevalent in developing countries), can reduce the overall risk of atopy by more than 60%, and an increased rate of parasitic infections has been associated with a decreased prevalence of asthma. It is speculated that these infections exert their effect by critically altering TH1/TH2 regulation. Important elements of newer hygiene hypotheses also include exposure to endotoxins, exposure to pets and growing up on a farm.

Some symptoms attributable to allergic diseases are mentioned in ancient sources. Particularly, three members of the Roman Julio-Claudian dynasty (Augustus, Claudius and Britannicus) are suspected to have a family history of atopy. The concept of “allergy” was originally introduced in 1906 by the Viennese pediatrician Clemens von Pirquet, after he noticed that patients who had received injections of horse serum or smallpox vaccine usually had quicker, more severe reactions to second injections. Pirquet called this phenomenon “allergy” from the Ancient Greek words ἄλλος allos meaning “other” and ἔργον ergon meaning “work”.

All forms of hypersensitivity used to be classified as allergies, and all were thought to be caused by an improper activation of the immune system. Later, it became clear that several different disease mechanisms were implicated, with a common link to a disordered activation of the immune system. In 1963, a new classification scheme was designed by Philip Gell and Robin Coombs that described four types of hypersensitivity reactions, known as Type I to Type IV hypersensitivity. With this new classification, the word allergy, sometimes clarified as a true allergy, was restricted to type I hypersensitivities (also called immediate hypersensitivity), which are characterized as rapidly developing reactions involving IgE antibodies.

A major breakthrough in understanding the mechanisms of allergy was the discovery of the antibody class labeled immunoglobulin E (IgE). IgE was simultaneously discovered in 1966–67 by two independent groups: Ishizaka’s team at the Children’s Asthma Research Institute and Hospital in Denver, USA, and by Gunnar Johansson and Hans Bennich in Uppsala, Sweden. Their joint paper was published in April 1969.

Radiometric assays include the radioallergosorbent test (RAST test) method, which uses IgE-binding (anti-IgE) antibodies labeled with radioactive isotopes for quantifying the levels of IgE antibody in the blood. Other, newer methods use colorimetric or fluorescence-labeled technology in the place of radioactive isotopes.[citation needed]

The RAST methodology was invented and marketed in 1974 by Pharmacia Diagnostics AB, Uppsala, Sweden, and the acronym RAST is actually a brand name. In 1989, Pharmacia Diagnostics AB replaced it with a superior test named the ImmunoCAP Specific IgE blood test, which uses the newer fluorescence-labeled technology.

American College of Allergy Asthma and Immunology (ACAAI) and the American Academy of Allergy Asthma and Immunology (AAAAI) issued the Joint Task Force Report “Pearls and pitfalls of allergy diagnostic testing” in 2008, and is firm in its statement that the term RAST is now obsolete:

The updated version, the ImmunoCAP Specific IgE blood test, is the only specific IgE assay to receive Food and Drug Administration approval to quantitatively report to its detection limit of 0.1kU/L.

An allergist is a physician specially trained to manage and treat allergies, asthma, and the other allergic diseases.
In the United States physicians holding certification by the American Board of Allergy and Immunology (ABAI) have successfully completed an accredited educational program and evaluation process, including a proctored examination to demonstrate knowledge, skills, and experience in patient care in allergy and immunology. Becoming an allergist/immunologist requires completion of at least nine years of training. After completing medical school and graduating with a medical degree, a physician will undergo three years of training in internal medicine (to become an internist) or pediatrics (to become a pediatrician). Once physicians have finished training in one of these specialties, they must pass the exam of either the American Board of Pediatrics (ABP), the American Osteopathic Board of Pediatrics (AOBP), the American Board of Internal Medicine (ABIM), or the American Osteopathic Board of Internal Medicine (AOBIM). Internists or pediatricians wishing to focus on the sub-specialty of allergy-immunology then complete at least an additional two years of study, called a fellowship, in an allergy/immunology training program. Allergist/immunologists listed as ABAI-certified have successfully passed the certifying examination of the ABAI following their fellowship.

In the United Kingdom, allergy is a subspecialty of general medicine or pediatrics. After obtaining postgraduate exams (MRCP or MRCPCH), a doctor works for several years as a specialist registrar before qualifying for the General Medical Council specialist register. Allergy services may also be delivered by immunologists. A 2003 Royal College of Physicians report presented a case for improvement of what were felt to be inadequate allergy services in the UK. In 2006, the House of Lords convened a subcommittee. It concluded likewise in 2007 that allergy services were insufficient to deal with what the Lords referred to as an “allergy epidemic” and its social cost; it made several recommendations.

Low-allergen foods are being developed, as are improvements in skin prick test predictions; evaluation of the atopy patch test, wasp sting outcomes predictions, a rapidly disintegrating epinephrine tablet, and anti-IL-5 for eosinophilic diseases.

 

Research has found that anxiety is one of the leading symptoms created by marijuana in users, and that there is a correlation between allergies and Weed and an increase in anxiety.

 

Anyone mixing allergies and weed is likely to experience side effects. This happens with all medications whether weed or allergies is mixed with them. Side effects can be harmful when mixing allergies and weed. Doctors are likely to refuse a patient a allergies prescription if the individual is a weed smoker or user. Of course, this could be due to the lack of studies and research completed on the mixing of allergies and Weed.

 

Heavy, long-term weed use is harmful for people. It alters the brain’s functions and structure, and all pharmaceuticals and drugs including allergies are designed to have an impact on the brain. There is a misplaced belief that pharmaceuticals and medication work by treating only the parts of the body affected yet this is obviously not the case in terms of allergies. For example, simple painkiller medication does not heal the injury, it simply interrupts the brains functions to receive the pain cause by the injury. To say then that two drugs, allergies and Weed, dol not interact is wrong. There will always be an interaction between allergies and Weed in the brain11.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/.

 

One of the milder side effects of mixing allergies and Weed is Scromiting. This condition, reportedly caused by mixing allergies and Weed, describes a marijuana-induced condition where the user experiences episodes of violent vomiting, which are often so severe and painful that they cause the person to scream. The medical term for Scromiting by mixing allergies and Weed is cannabinoid hyperemesis syndrome, or CHS.  For these reasons, some people choose to quit smoking weed.

 

It was first included in scientific reports in 2004. Since then, researchers have determined that Scromiting is the result of ongoing, long-term use of marijuana—particularly when the drug contains high levels of THC, marijuana’s main psychoactive ingredient. Some experts believe that the receptors in the gut become overstimulated by THC, thus causing the repeated cycles of vomiting.

 

In the long run, a person can become even more depressed. There is a belief that marijuana is all-natural and not harmful to a person’s health. This is not true and allergies and weed can cause health issues the more a person consumes it.

 

How does Weed effect the potency of allergies?

 

The way in which the body absorbs and process allergies may be affected by weed. Therefore, the potency of the allergies may be less effective. Marijuana inhibits the metabolization of allergies. Not having the right potency of allergies means a person may either have a delay in the relief of their underlying symptoms.

 

A person seeking allergies medication that uses weed should speak to their doctor. It is important the doctor knows about a patient’s weed use, so they can prescribe the right allergies medication and strength. Or depending on level of interactions they may opt to prescribe a totally different medication. It is important for the doctor to know about their patient’s marijuana use. Weed is being legalized around the US, so doctors should be open to speaking about a patient’s use of it.

 

Sideffects of allergies and Weed

 

Many individuals may not realize that there are side effects and consequences to mixing allergies and Weed such as:

 

  • Dizziness
  • Sluggishness
  • Drowsiness
  • Shortness of breath
  • Itching
  • Hives
  • Palpitations
  • Respiratory Depression
  • Cardiac Arrest
  • Coma
  • Seizures
  • Death

 

Interestingly, it is impossible to tell what effect mixing this substance with Weed will have on an individual due to their own unique genetic make up and tolerance. It is never advisable to mix allergies and Weed due to the chances of mild, moderate and severe side effects. If you are having an adverse reaction from mixing allergies and Weed it’s imperative that you head to your local emergency room. Even mixing a small amount of allergies and Weed is not recommended.

 

Taking allergies and Weed together

 

People who take allergies and Weed together will experience the effects of both substances. Technically, the specific effects and reactions that occur due to frequent use of allergies and weed depend on whether you consume more weed in relation to allergies or more allergies in relation to weed.

 

The use of significantly more weed and allergies will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and allergies may experience effects such as:

 

  • reduced motor reflexes from allergies and Weed
  • dizziness from Weed and allergies
  • nausea and vomiting due to allergies and Weed

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and allergies leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Mixing weed and allergies

 

The primary effect of weed is influenced by an increase in the concentration of the inhibitory neurotransmitter GABA, which is found in the spinal cord and brain stem, and by a reduction in its effect on neuronal transmitters. When weed is combined with allergies this primary effect is exaggerated, increasing the strain on the body with unpredictable results.

 

Weed and allergies affects dopamine levels in the brain, causing the body both mental and physical distress. Larger amounts of allergies and weed have a greater adverse effect yet leading medical recommendation is that smaller does of allergies can be just as harmful and there is no way of knowing exactly how allergies and weed is going to affect an individual before they take it.

 

Taking allergies and weed together

 

People who take allergies and weed together will experience the effects of both substances. The use of significantly more allergies with weed will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and allergies may experience effects such as:

 

  • reduced motor reflexes from allergies and weed
  • dizziness from weed and allergies
  • nausea and vomiting of the allergies

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and allergies leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Weed Vs allergies

 

Taking allergies in sufficient quantities increases the risk of a heart failure. Additionally, people under the influence of allergies and weed may have difficulty forming new memories. With weed vs allergies in an individual’s system they become confused and do not understand their environment. Due to the synergistic properties of allergies when mixed with weed it can lead to confusion, anxiety, depression and other mental disorders. Chronic use of allergies and weed can lead to permanent changes in the brain22.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/.

 

allergies Vs Weed

 

Studies investigating the effects of drugs such as allergies and weed have shown that the potential for parasomnia (performing tasks in sleep) is dramatically increased when allergies and weed are combined. Severe and dangerous side effects can occur when medications are mixed in the system, and sleep disorders are a common side effect of taking weed and allergies together.

 

When a small to medium amount of weed is combined with allergies, sleep disorders such as sleep apnea can occur. According to the latest data from the US Centers for Disease Control and Prevention (CDC) most ER visits and hospitalizations caused by too much weed were associated with other substances such as allergies.

 

How long after taking allergies can I smoke weed or take edibles?

 

To avoid any residual toxicity it is advisable to wait until the allergies has totally cleared your system before taking weed, even in small quantities.

 

Overdose on allergies and weed

 

In the case of Overdose on allergies or if you are worried after mixing allergies and weed, call a first responder or proceed to the nearest Emergency Room immediately.

 

If you are worried about someone who has taken too much allergies or mixed weed with allergies then call a first responder or take them to get immediate medical help. The best place for you or someone you care about in the case of a medical emergency is under medical supervision. Be sure to tell the medical team that there is a mix of allergies and weed in their system.

 

Excessive Weed intake and result in scromiting, chs, and anxiety disorder.  It is advisable to quit vaping weed if you are feeling these symptoms.

Mixing allergies and weed and antidepressants

 

Weed users feeling depressed and anxious may be prescribed antidepressant medication. There are some antidepressant users who also use allergies and weed. These individuals may not realize that there are side effects and consequences to consuming both allergies, marijuana and a range of antidepressants.

 

Studies on weed, allergies and antidepressants is almost nil. The reason for so little information on the side effects of the two is mostly down to marijuana being illegal in most places – although a number of states in the United States have legalized the drug.

 

Self-medicating with Weed and allergies

 

A lot of people suffer from depression caused by weed and allergies. How many? According to Anxiety and Depression Association of America (ADAA), in any given year, it is estimated that nearly 16 million adults experience depression. Unfortunately, that number is likely to be wrong due to under reporting. Many people do not report suffering from depression because they do not want to be looked at as suffering from a mental illness. The stigmas around mental health continue and people do not want to be labeled as depressed.

 

Potential side effects from mixing allergies and weed

 

Quitting weed to take allergies

 

Medical professionals say an individual prescribed or taking allergies should not stop using weed cold turkey.  Withdrawal symptoms can be significant. Heavy pot users should especially avoid going cold turkey. The side effects of withdrawal from weed include anxiety, irritability, loss of sleep, change of appetite, and depression by quitting weed cold turkey and starting to take allergies.

 

A person beginning to use allergies should cut back on weed slowly. While reducing the amount of weed use, combine it with mindfulness techniques and/or yoga. Experts stress that non-medication can greatly improve a person’s mood.

 

Weed and allergies can affect a person in various ways. Different types of marijuana produce different side effects. Side effects of weed and allergies may include:

 

  • loss of motor skills
  • poor or lack of coordination
  • lowered blood pressure
  • short-term memory loss
  • increased heart rate
  • increased blood pressure
  • anxiety
  • paranoia
  • increased energy
  • increased motivation

 

Mixing allergies and weed can also produce hallucinations in users. This makes marijuana a hallucinogenic for some users. Weed creates different side effects in different people, making it a very potent drug. Now, mixing allergies or other mental health drugs with weed can cause even more unwanted side effects.

 

Mixing drugs and weed conclusion

 

Long-term weed use can make depression and anxiety worse. In addition, using marijuana can prevent allergies from working to their full potential33.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/. Weed consumption should be reduced gradually to get the most out of prescription medication. Marijuana is a drug and it is harmful to individual’s long-term health. Weed has many side effects and the consequences are different to each person who uses it, especially when mixed with allergies.

 

If you take allergies, and also drink Alcohol or MDMA, you can research the effects of allergies and Alcohol , allergies and Cocaine as well as allergies and MDMA here.

 

To find the effects of other drugs and weed refer to our Weed and Other Drugs Index A to L or our Weed and Other Drugs Index M-Z.

Or you could find what you are looking for in our Alcohol and Interactions with Other Drugs index A to L or Alcohol and Interactions with Other Drugs index M to Z , Cocaine and Interactions with Other Drugs index A to L or Cocaine and Interactions with Other Drugs index M to Z or our MDMA and Interactions with Other Drugs Index A to L or MDMA and Interactions with Other Drugs Index M to Z.

 

allergies and Weed

allergies and Weed

Counselling for Weed Addiction; Low Cost - Qualified Therapists - Available Now - 20% Off

We may make a commission if you purchase anything via the adverts or links on this page.

 

Betterhelp is for anyone suffering from mental health issues. Whether you suffer from anxiety, depression, weed addiction, eating disorders, or just need someone to speak to, Betterhelp can pair you with a qualified therapist.

 

In the wake of the pandemic, an increasing number of people have sought out therapeutic and conseling services to help with weed cessation. Better Help has seen a massive rise in people seeking help over the last two to three years.

 

If you or someone you care about is smoking or ingesting a level of weed that makes their life become unmanageable, Betterhelp has counselors and therapists on hand to help for less that $90 per week.

Specializations | Burnout, Anxiety, Depression, Stress, Anger Management, Dependencies, Grief, Seasonal Depressive Disorder, Life Crisis, Smoking Cessation, Weed Cessation (among others)

 

Betterhelp Cost | The standard fee for BetterHelp therapy is only $60 to $90 per week or $240 to $360 per month.

 

Key Takeaways |

  • Largest online therapy platform
  • Low cost
  • Good for stopping weed
  • Messaging
  • Live video
  • Phone calls
  • Live chat
  • No lock in contracts
  • Cancel anytime
  • Licensed and accredited therapists

 

Discounts Available | We have negotiated a generous 20% discount for readers of our website. Press Here to get 20% Off

 

  • 1
    1.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/
  • 2
    2.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/
  • 3
    3.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/