Cellulose and Weed

Edited by Hugh Soames
Advertising: We may earn a commission if you buy anything via our advertising or external links
Cellulose and Weed
Most people who consume marijuana do so for its mood-altering and relaxing abilities. Weed gives people a high and allows them to relax. However, heavy consumption of weed can cause unwanted results. It can increase the anxiety and depression a person experiences, and it can interact with certain other drugs including Cellulose. It is important to remember that interactions do occur with all types of drugs, to a great or lesser extent and this article details the interactions of mixing Cellulose and Weed.
Mixing Cellulose and Weed
Cellulose is an organic compound with the formula (C
6H
10O
5)
n, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.
Cellulose is mainly used to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and rayon. Conversion of cellulose from energy crops into biofuels such as cellulosic ethanol is under development as a renewable fuel source. Cellulose for industrial use is mainly obtained from wood pulp and cotton.
Some animals, particularly ruminants and termites, can digest cellulose with the help of symbiotic micro-organisms that live in their guts, such as Trichonympha. In human nutrition, cellulose is a non-digestible constituent of insoluble dietary fiber, acting as a hydrophilic bulking agent for feces and potentially aiding in defecation.
Cellulose was discovered in 1838 by the French chemist Anselme Payen, who isolated it from plant matter and determined its chemical formula. Cellulose was used to produce the first successful thermoplastic polymer, celluloid, by Hyatt Manufacturing Company in 1870. Production of rayon (“artificial silk”) from cellulose began in the 1890s and cellophane was invented in 1912. Hermann Staudinger determined the polymer structure of cellulose in 1920. The compound was first chemically synthesized (without the use of any biologically derived enzymes) in 1992, by Kobayashi and Shoda.
Cellulose has no taste, is odorless, is hydrophilic with the contact angle of 20–30 degrees, is insoluble in water and most organic solvents, is chiral and is biodegradable. It was shown to melt at 467 °C in pulse tests made by Dauenhauer et al. (2016). It can be broken down chemically into its glucose units by treating it with concentrated mineral acids at high temperature.
Cellulose is derived from D-glucose units, which condense through β(1→4)-glycosidic bonds. This linkage motif contrasts with that for α(1→4)-glycosidic bonds present in starch and glycogen. Cellulose is a straight chain polymer. Unlike starch, no coiling or branching occurs and the molecule adopts an extended and rather stiff rod-like conformation, aided by the equatorial conformation of the glucose residues. The multiple hydroxyl groups on the glucose from one chain form hydrogen bonds with oxygen atoms on the same or on a neighbor chain, holding the chains firmly together side-by-side and forming microfibrils with high tensile strength. This confers tensile strength in cell walls where cellulose microfibrils are meshed into a polysaccharide matrix. The high tensile strength of plant stems and of the tree wood also arises from the arrangement of cellulose fibers intimately distributed into the lignin matrix. The mechanical role of cellulose fibers in the wood matrix responsible for its strong structural resistance, can somewhat be compared to that of the reinforcement bars in concrete, lignin playing here the role of the hardened cement paste acting as the “glue” in between the cellulose fibers. Mechanical properties of cellulose in primary plant cell wall are correlated with growth and expansion of plant cells. Live fluorescence microscopy techniques are promising in investigation of the role of cellulose in growing plant cells.
Compared to starch, cellulose is also much more crystalline. Whereas starch undergoes a crystalline to amorphous transition when heated beyond 60–70 °C in water (as in cooking), cellulose requires a temperature of 320 °C and pressure of 25 MPa to become amorphous in water.
Several types of cellulose are known. These forms are distinguished according to the location of hydrogen bonds between and within strands. Natural cellulose is cellulose I, with structures Iα and Iβ. Cellulose produced by bacteria and algae is enriched in Iα while cellulose of higher plants consists mainly of Iβ. Cellulose in regenerated cellulose fibers is cellulose II. The conversion of cellulose I to cellulose II is irreversible, suggesting that cellulose I is metastable and cellulose II is stable. With various chemical treatments it is possible to produce the structures cellulose III and cellulose IV.
Many properties of cellulose depend on its chain length or degree of polymerization, the number of glucose units that make up one polymer molecule. Cellulose from wood pulp has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial cellulose have chain lengths ranging from 800 to 10,000 units. Molecules with very small chain length resulting from the breakdown of cellulose are known as cellodextrins; in contrast to long-chain cellulose, cellodextrins are typically soluble in water and organic solvents.
The chemical formula of cellulose is (C6H10O5)n where n is the degree of polymerization and represents the number of glucose groups.
Plant-derived cellulose is usually found in a mixture with hemicellulose, lignin, pectin and other substances, while bacterial cellulose is quite pure, has a much higher water content and higher tensile strength due to higher chain lengths.: 3384
Cellulose consists of fibrils with crystalline and amorphous regions. These cellulose fibrils may be individualized by mechanical treatment of cellulose pulp, often assisted by chemical oxidation or enzymatic treatment, yielding semi-flexible cellulose nanofibrils generally 200 nm to 1 μm in length depending on the treatment intensity. Cellulose pulp may also be treated with strong acid to hydrolyze the amorphous fibril regions, thereby producing short rigid cellulose nanocrystals a few 100 nm in length. These nanocelluloses are of high technological interest due to their self-assembly into cholesteric liquid crystals, production of hydrogels or aerogels, use in nanocomposites with superior thermal and mechanical properties, and use as Pickering stabilizers for emulsions.
In plants cellulose is synthesized at the plasma membrane by rosette terminal complexes (RTCs). The RTCs are hexameric protein structures, approximately 25 nm in diameter, that contain the cellulose synthase enzymes that synthesise the individual cellulose chains. Each RTC floats in the cell’s plasma membrane and “spins” a microfibril into the cell wall.
RTCs contain at least three different cellulose synthases, encoded by CesA (Ces is short for “cellulose synthase”) genes, in an unknown stoichiometry. Separate sets of CesA genes are involved in primary and secondary cell wall biosynthesis. There are known to be about seven subfamilies in the plant CesA superfamily, some of which include the more cryptic, tentatively-named Csl (cellulose synthase-like) enzymes. These cellulose syntheses use UDP-glucose to form the β(1→4)-linked cellulose.
Bacterial cellulose is produced using the same family of proteins, although the gene is called BcsA for “bacterial cellulose synthase” or CelA for “cellulose” in many instances. In fact, plants acquired CesA from the endosymbiosis event that produced the chloroplast. All cellulose synthases known belongs to glucosyltransferase family 2 (GT2).
Cellulose synthesis requires chain initiation and elongation, and the two processes are separate.
Cellulose synthase (CesA) initiates cellulose polymerization using a steroid primer, sitosterol-beta-glucoside, and UDP-glucose. It then utilizes UDP-D-glucose precursors to elongate the growing cellulose chain. A cellulase may function to cleave the primer from the mature chain.
Cellulose is also synthesised by tunicate animals, particularly in the tests of ascidians (where the cellulose was historically termed “tunicine” (tunicin)).
Cellulolysis is the process of breaking down cellulose into smaller polysaccharides called cellodextrins or completely into glucose units; this is a hydrolysis reaction. Because cellulose molecules bind strongly to each other, cellulolysis is relatively difficult compared to the breakdown of other polysaccharides. However, this process can be significantly intensified in a proper solvent, e.g. in an ionic liquid.
Most mammals have limited ability to digest dietary fiber such as cellulose. Some ruminants like cows and sheep contain certain symbiotic anaerobic bacteria (such as Cellulomonas and Ruminococcus spp.) in the flora of the rumen, and these bacteria produce enzymes called cellulases that hydrolyze cellulose. The breakdown products are then used by the bacteria for proliferation. The bacterial mass is later digested by the ruminant in its digestive system (stomach and small intestine). Horses use cellulose in their diet by fermentation in their hindgut. Some termites contain in their hindguts certain flagellate protozoa producing such enzymes, whereas others contain bacteria or may produce cellulase.
The enzymes used to cleave the glycosidic linkage in cellulose are glycoside hydrolases including endo-acting cellulases and exo-acting glucosidases. Such enzymes are usually secreted as part of multienzyme complexes that may include dockerins and carbohydrate-binding modules.
At temperatures above 350 °C, cellulose undergoes thermolysis (also called ‘pyrolysis’), decomposing into solid char, vapors, aerosols, and gases such as carbon dioxide. Maximum yield of vapors which condense to a liquid called bio-oil is obtained at 500 °C.
Semi-crystalline cellulose polymers react at pyrolysis temperatures (350–600 °C) in a few seconds; this transformation has been shown to occur via a solid-to-liquid-to-vapor transition, with the liquid (called intermediate liquid cellulose or molten cellulose) existing for only a fraction of a second. Glycosidic bond cleavage produces short cellulose chains of two-to-seven monomers comprising the melt. Vapor bubbling of intermediate liquid cellulose produces aerosols, which consist of short chain anhydro-oligomers derived from the melt.
Continuing decomposition of molten cellulose produces volatile compounds including levoglucosan, furans, pyrans, light oxygenates, and gases via primary reactions. Within thick cellulose samples, volatile compounds such as levoglucosan undergo ‘secondary reactions’ to volatile products including pyrans and light oxygenates such as glycolaldehyde.
Hemicelluloses are polysaccharides related to cellulose that comprises about 20% of the biomass of land plants. In contrast to cellulose, hemicelluloses are derived from several sugars in addition to glucose, especially xylose but also including mannose, galactose, rhamnose, and arabinose. Hemicelluloses consist of shorter chains – between 500 and 3000 sugar units. Furthermore, hemicelluloses are branched, whereas cellulose is unbranched.
Cellulose is soluble in several kinds of media, several of which are the basis of commercial technologies. These dissolution processes are reversible and are used in the production of regenerated celluloses (such as viscose and cellophane) from dissolving pulp.
The most important solubilizing agent is carbon disulfide in the presence of alkali. Other agents include Schweizer’s reagent, N-methylmorpholine N-oxide, and lithium chloride in dimethylacetamide. In general, these agents modify the cellulose, rendering it soluble. The agents are then removed concomitant with the formation of fibers. Cellulose is also soluble in many kinds of ionic liquids.
The history of regenerated cellulose is often cited as beginning with George Audemars, who first manufactured regenerated nitrocellulose fibers in 1855. Although these fibers were soft and strong -resembling silk- they had the drawback of being highly flammable. Hilaire de Chardonnet perfected production of nitrocellulose fibers, but manufacturing of these fibers by his process was relatively uneconomical. In 1890, L.H. Despeissis invented the cuprammonium process – which uses a cuprammonium solution to solubilize cellulose – a method still used today for production of artificial silk. In 1891, it was discovered that treatment of cellulose with alkali and carbon disulfide generated a soluble cellulose derivative known as viscose. This process, patented by the founders of the Viscose Development Company, is the most widely used method for manufacturing regenerated cellulose products. Courtaulds purchased the patents for this process in 1904, leading to significant growth of viscose fiber production. By 1931, expiration of patents for the viscose process led to its adoption worldwide. Global production of regenerated cellulose fiber peaked in 1973 at 3,856,000 tons.
Regenerated cellulose can be used to manufacture a wide variety of products. While the first application of regenerated cellulose was as a clothing textile, this class of materials is also used in the production of disposable medical devices as well as fabrication of artificial membranes.
The hydroxyl groups (−OH) of cellulose can be partially or fully reacted with various reagents to afford derivatives with useful properties like mainly cellulose esters and cellulose ethers (−OR). In principle, although not always in current industrial practice, cellulosic polymers are renewable resources.
Ester derivatives include:
Cellulose acetate and cellulose triacetate are film- and fiber-forming materials that find a variety of uses. Nitrocellulose was initially used as an explosive and was an early film forming material. When plasticized with camphor, nitrocellulose gives celluloid.
Cellulose Ether derivatives include:
The sodium carboxymethyl cellulose can be cross-linked to give the croscarmellose sodium (E468) for use as a disintegrant in pharmaceutical formulations. Furthermore, by the covalent attachment of thiol groups to cellulose ethers such as sodium carboxymethyl cellulose, ethyl cellulose or hydroxyethyl cellulose mucoadhesive and permeation enhancing properties can be introduced. Thiolated cellulose derivatives (see thiomers) exhibit also high binding properties for metal ions.
Cellulose for industrial use is mainly obtained from wood pulp and from cotton.
Energy crops:
The major combustible component of non-food energy crops is cellulose, with lignin second. Non-food energy crops produce more usable energy than edible energy crops (which have a large starch component), but still compete with food crops for agricultural land and water resources. Typical non-food energy crops include industrial hemp, switchgrass, Miscanthus, Salix (willow), and Populus (poplar) species. A strain of Clostridium bacteria found in zebra dung, can convert nearly any form of cellulose into butanol fuel.
Another possible application is as Insect repellents.
Research has found that anxiety is one of the leading symptoms created by marijuana in users, and that there is a correlation between Cellulose and Weed and an increase in anxiety.
Anyone mixing Cellulose and weed is likely to experience side effects. This happens with all medications whether weed or Cellulose is mixed with them. Side effects can be harmful when mixing Cellulose and weed. Doctors are likely to refuse a patient a Cellulose prescription if the individual is a weed smoker or user. Of course, this could be due to the lack of studies and research completed on the mixing of Cellulose and Weed.
Heavy, long-term weed use is harmful for people. It alters the brain’s functions and structure, and all pharmaceuticals and drugs including Cellulose are designed to have an impact on the brain. There is a misplaced belief that pharmaceuticals and medication work by treating only the parts of the body affected yet this is obviously not the case in terms of Cellulose. For example, simple painkiller medication does not heal the injury, it simply interrupts the brains functions to receive the pain cause by the injury. To say then that two drugs, Cellulose and Weed, dol not interact is wrong. There will always be an interaction between Cellulose and Weed in the brain11.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/.
One of the milder side effects of mixing Cellulose and Weed is Scromiting. This condition, reportedly caused by mixing Cellulose and Weed, describes a marijuana-induced condition where the user experiences episodes of violent vomiting, which are often so severe and painful that they cause the person to scream. The medical term for Scromiting by mixing Cellulose and Weed is cannabinoid hyperemesis syndrome, or CHS. For these reasons, some people choose to quit smoking weed.
It was first included in scientific reports in 2004. Since then, researchers have determined that Scromiting is the result of ongoing, long-term use of marijuana—particularly when the drug contains high levels of THC, marijuana’s main psychoactive ingredient. Some experts believe that the receptors in the gut become overstimulated by THC, thus causing the repeated cycles of vomiting.
In the long run, a person can become even more depressed. There is a belief that marijuana is all-natural and not harmful to a person’s health. This is not true and Cellulose and weed can cause health issues the more a person consumes it.
How does Weed effect the potency of Cellulose?
The way in which the body absorbs and process Cellulose may be affected by weed. Therefore, the potency of the Cellulose may be less effective. Marijuana inhibits the metabolization of Cellulose. Not having the right potency of Cellulose means a person may either have a delay in the relief of their underlying symptoms.
A person seeking Cellulose medication that uses weed should speak to their doctor. It is important the doctor knows about a patient’s weed use, so they can prescribe the right Cellulose medication and strength. Or depending on level of interactions they may opt to prescribe a totally different medication. It is important for the doctor to know about their patient’s marijuana use. Weed is being legalized around the US, so doctors should be open to speaking about a patient’s use of it.
Sideffects of Cellulose and Weed
Many individuals may not realize that there are side effects and consequences to mixing Cellulose and Weed such as:
- Dizziness
- Sluggishness
- Drowsiness
- Shortness of breath
- Itching
- Hives
- Palpitations
- Respiratory Depression
- Cardiac Arrest
- Coma
- Seizures
- Death
Interestingly, it is impossible to tell what effect mixing this substance with Weed will have on an individual due to their own unique genetic make up and tolerance. It is never advisable to mix Cellulose and Weed due to the chances of mild, moderate and severe side effects. If you are having an adverse reaction from mixing Cellulose and Weed it’s imperative that you head to your local emergency room. Even mixing a small amount of Cellulose and Weed is not recommended.
Taking Cellulose and Weed together
People who take Cellulose and Weed together will experience the effects of both substances. Technically, the specific effects and reactions that occur due to frequent use of Cellulose and weed depend on whether you consume more weed in relation to Cellulose or more Cellulose in relation to weed.
The use of significantly more weed and Cellulose will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.
People who take both weed and Cellulose may experience effects such as:
- reduced motor reflexes from Cellulose and Weed
- dizziness from Weed and Cellulose
- nausea and vomiting due to Cellulose and Weed
Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Cellulose leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.
Mixing weed and Cellulose
The primary effect of weed is influenced by an increase in the concentration of the inhibitory neurotransmitter GABA, which is found in the spinal cord and brain stem, and by a reduction in its effect on neuronal transmitters. When weed is combined with Cellulose this primary effect is exaggerated, increasing the strain on the body with unpredictable results.
Weed and Cellulose affects dopamine levels in the brain, causing the body both mental and physical distress. Larger amounts of Cellulose and weed have a greater adverse effect yet leading medical recommendation is that smaller does of Cellulose can be just as harmful and there is no way of knowing exactly how Cellulose and weed is going to affect an individual before they take it.
Taking Cellulose and weed together
People who take Cellulose and weed together will experience the effects of both substances. The use of significantly more Cellulose with weed will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.
People who take both weed and Cellulose may experience effects such as:
- reduced motor reflexes from Cellulose and weed
- dizziness from weed and Cellulose
- nausea and vomiting of the Cellulose
Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Cellulose leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.
Weed Vs Cellulose
Taking Cellulose in sufficient quantities increases the risk of a heart failure. Additionally, people under the influence of Cellulose and weed may have difficulty forming new memories. With weed vs Cellulose in an individual’s system they become confused and do not understand their environment. Due to the synergistic properties of Cellulose when mixed with weed it can lead to confusion, anxiety, depression and other mental disorders. Chronic use of Cellulose and weed can lead to permanent changes in the brain22.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/.
Cellulose Vs Weed
Studies investigating the effects of drugs such as Cellulose and weed have shown that the potential for parasomnia (performing tasks in sleep) is dramatically increased when Cellulose and weed are combined. Severe and dangerous side effects can occur when medications are mixed in the system, and sleep disorders are a common side effect of taking weed and Cellulose together.
When a small to medium amount of weed is combined with Cellulose, sleep disorders such as sleep apnea can occur. According to the latest data from the US Centers for Disease Control and Prevention (CDC) most ER visits and hospitalizations caused by too much weed were associated with other substances such as Cellulose.
How long after taking Cellulose can I smoke weed or take edibles?
To avoid any residual toxicity it is advisable to wait until the Cellulose has totally cleared your system before taking weed, even in small quantities.
Overdose on Cellulose and weed
In the case of Overdose on Cellulose or if you are worried after mixing Cellulose and weed, call a first responder or proceed to the nearest Emergency Room immediately.
If you are worried about someone who has taken too much Cellulose or mixed weed with Cellulose then call a first responder or take them to get immediate medical help. The best place for you or someone you care about in the case of a medical emergency is under medical supervision. Be sure to tell the medical team that there is a mix of Cellulose and weed in their system.
Excessive Weed intake and result in scromiting, chs, and anxiety disorder. It is advisable to quit vaping weed if you are feeling these symptoms.
Mixing Cellulose and weed and antidepressants
Weed users feeling depressed and anxious may be prescribed antidepressant medication. There are some antidepressant users who also use Cellulose and weed. These individuals may not realize that there are side effects and consequences to consuming both Cellulose, marijuana and a range of antidepressants.
Studies on weed, Cellulose and antidepressants is almost nil. The reason for so little information on the side effects of the two is mostly down to marijuana being illegal in most places – although a number of states in the United States have legalized the drug.
Self-medicating with Weed and Cellulose
A lot of people suffer from depression caused by weed and Cellulose. How many? According to Anxiety and Depression Association of America (ADAA), in any given year, it is estimated that nearly 16 million adults experience depression. Unfortunately, that number is likely to be wrong due to under reporting. Many people do not report suffering from depression because they do not want to be looked at as suffering from a mental illness. The stigmas around mental health continue and people do not want to be labeled as depressed.
Potential side effects from mixing Cellulose and weed
Quitting weed to take Cellulose
Medical professionals say an individual prescribed or taking Cellulose should not stop using weed cold turkey. Withdrawal symptoms can be significant. Heavy pot users should especially avoid going cold turkey. The side effects of withdrawal from weed include anxiety, irritability, loss of sleep, change of appetite, and depression by quitting weed cold turkey and starting to take Cellulose.
A person beginning to use Cellulose should cut back on weed slowly. While reducing the amount of weed use, combine it with mindfulness techniques and/or yoga. Experts stress that non-medication can greatly improve a person’s mood.
Weed and Cellulose can affect a person in various ways. Different types of marijuana produce different side effects. Side effects of weed and Cellulose may include:
- loss of motor skills
- poor or lack of coordination
- lowered blood pressure
- short-term memory loss
- increased heart rate
- increased blood pressure
- anxiety
- paranoia
- increased energy
- increased motivation
Mixing Cellulose and weed can also produce hallucinations in users. This makes marijuana a hallucinogenic for some users. Weed creates different side effects in different people, making it a very potent drug. Now, mixing Cellulose or other mental health drugs with weed can cause even more unwanted side effects.
Mixing drugs and weed conclusion
Long-term weed use can make depression and anxiety worse. In addition, using marijuana can prevent Cellulose from working to their full potential33.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/. Weed consumption should be reduced gradually to get the most out of prescription medication. Marijuana is a drug and it is harmful to individual’s long-term health. Weed has many side effects and the consequences are different to each person who uses it, especially when mixed with Cellulose.
If you take Cellulose, and also drink Alcohol or MDMA, you can research the effects of Cellulose and Alcohol , Cellulose and Cocaine as well as Cellulose and MDMA here.
To find the effects of other drugs and weed refer to our Weed and Other Drugs Index A to L or our Weed and Other Drugs Index M-Z.
Or you could find what you are looking for in our Alcohol and Interactions with Other Drugs index A to L or Alcohol and Interactions with Other Drugs index M to Z , Cocaine and Interactions with Other Drugs index A to L or Cocaine and Interactions with Other Drugs index M to Z or our MDMA and Interactions with Other Drugs Index A to L or MDMA and Interactions with Other Drugs Index M to Z.

Cellulose and Weed
Counselling for Weed Addiction; Low Cost - Qualified Therapists - Available Now - 20% Off
We may make a commission if you purchase anything via the adverts or links on this page.
Betterhelp is for anyone suffering from mental health issues. Whether you suffer from anxiety, depression, weed addiction, eating disorders, or just need someone to speak to, Betterhelp can pair you with a qualified therapist.
In the wake of the pandemic, an increasing number of people have sought out therapeutic and conseling services to help with weed cessation. Better Help has seen a massive rise in people seeking help over the last two to three years.
If you or someone you care about is smoking or ingesting a level of weed that makes their life become unmanageable, Betterhelp has counselors and therapists on hand to help for less that $90 per week.
Specializations | Burnout, Anxiety, Depression, Stress, Anger Management, Dependencies, Grief, Seasonal Depressive Disorder, Life Crisis, Smoking Cessation, Weed Cessation (among others)
Betterhelp Cost | The standard fee for BetterHelp therapy is only $60 to $90 per week or $240 to $360 per month.
Key Takeaways |
- Largest online therapy platform
- Low cost
- Good for stopping weed
- Messaging
- Live video
- Phone calls
- Live chat
- No lock in contracts
- Cancel anytime
- Licensed and accredited therapists
Discounts Available | We have negotiated a generous 20% discount for readers of our website. Press Here to get 20% Off