Androderm and Weed

{Fulldrug} and Weed

Authored by Pin Ng PhD

Edited by Hugh Soames

Advertising: We may earn a commission if you buy anything via our advertising or external links

Androderm and Weed

 

Most people who consume marijuana do so for its mood-altering and relaxing abilities. Weed gives people a high and allows them to relax. However, heavy consumption of weed can cause unwanted results. It can increase the anxiety and depression a person experiences, and it can interact with certain other drugs including Androderm. It is important to remember that interactions do occur with all types of drugs, to a great or lesser extent and this article details the interactions of mixing Androderm and Weed.

 

Mixing Androderm and Weed

 

Testosterone (T) is a medication and naturally occurring steroid hormone. It is used to treat male hypogonadism, gender dysphoria, and certain types of breast cancer. It may also be used to increase athletic ability in the form of doping. It is unclear if the use of testosterone for low levels due to aging is beneficial or harmful. Testosterone can be used as a gel or patch that is applied to the skin, injection into a muscle, tablet that is placed in the cheek, or tablet that is taken by mouth.

Common side effects of testosterone include acne, swelling, and breast enlargement in men. Serious side effects may include liver toxicity, heart disease, and behavioral changes. Women and children who are exposed may develop masculinization. It is recommended that individuals with prostate cancer not use the medication. It can cause harm to the baby if used during pregnancy or breastfeeding. Testosterone is in the androgen family of medications.

Testosterone was first isolated in 1935, and approved for medical use in 1939. Rates of use have increased three times in the United States between 2001 and 2011. It is on the World Health Organization’s List of Essential Medicines. It is available as a generic medication. In 2020, it was the 172nd most commonly prescribed medication in the United States, with more than 3 million prescriptions.

The primary use of testosterone is the treatment of males with too little or no natural testosterone production, also termed hypogonadism or hypoandrogenism (androgen deficiency). This treatment is referred to as hormone replacement therapy (HRT), or alternatively, and more specifically, as testosterone replacement therapy (TRT) or androgen replacement therapy (ART). It is used to maintain serum testosterone levels in the normal male range. Decline of testosterone production with age has led to interest in testosterone supplementation.

A 2020 guideline from the American College of Physicians supports the discussion of testosterone in adult men with age-related low levels of testosterone who have sexual dysfunction. They recommend yearly evaluation regarding possible improvement and, if none, to discontinue testosterone; physicians should consider intramuscular treatments, rather than transdermal treatments, due to costs and since the effectiveness and harm of either method is similar. Testosterone treatment for reasons other than possible improvement of sexual dysfunction may not be recommended.

Testosterone deficiency (also termed hypotestosteronism or hypotestosteronemia) is an abnormally low testosterone production. It may occur because of testicular dysfunction (primary hypogonadism) or hypothalamic–pituitary dysfunction (secondary hypogonadism) and may be congenital or acquired.[medical citation needed]

Testosterone levels may decline gradually with age. The United States Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone supplement have been established for low testosterone levels due to aging. The FDA has required that labels on testosterone include warnings about increased risk of heart attacks and stroke.

To take advantage of its virilizing effects, testosterone is administered to transgender men and other transmasculine individuals as part of masculinizing hormone therapy, titrated to clinical effect with a “target level” of the average male’s testosterone level.

Testosterone therapy is effective in the short-term for the treatment of hypoactive sexual desire disorder (HSDD) in women. However, its long-term safety is unclear. Because of a lack data to support its efficacy and safety, the Endocrine Society recommends against the routine use of testosterone in women to treat low androgen levels due to hypopituitarism, adrenal insufficiency, surgical removal of the ovaries, high-dose corticosteroid therapy, or other causes. Similarly, because of a lack of data to support its efficacy and safety, the Endocrine Society recommends against the use of testosterone in women to improve general well-being, to treat infertility, sexual dysfunction due to causes other than HSDD, or to improve cognitive, cardiovascular, metabolic, and/or bone health.

A 2014 systematic review and meta-analysis of 35 studies consisting of over 5,000 postmenopausal women with normal adrenal gland function found that testosterone therapy was associated with significant improvement in a variety of domains of sexual function. These domains included frequency of sexual activity, orgasm, arousal, and sexual satisfaction, among others. Women who were menopausal due to ovariectomy showed significantly greater improvement in sexual function with testosterone relative to those who had normal menopause. In addition to beneficial effects on sexual function, testosterone was associated with unfavorable changes in blood lipids. These included decreased levels of total cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol, and increased levels of low-density lipoprotein (LDL) cholesterol. However, the changes were small in magnitude, and the long-term significance in relation to cardiovascular outcomes is uncertain. The changes were more pronounced with oral testosterone undecanoate than with parenteral routes, such as transdermal testosterone. Testosterone showed no significant effect on depressed mood anxiety, bone mineral density (BMD), or anthropomorphic measures like body weight or body mass index. Conversely, it was associated with a significant incidence of androgenic side effects, including acne and hirsutism (excessive facial/body hair growth). Other androgenic side effects, such as weight gain, pattern hair loss, and voice deepening, were also reported in some trials, but were excluded from analyses due to insufficient data. The overall quality of the evidence was rated as low and was considered to be inconclusive in certain areas, for instance on long-term safety.

A subsequent 2017 systematic review and meta-analysis of studies including over 3,000 postmenopausal women with HSDD similarly found that short-term transdermal testosterone therapy was effective in improving multiple domains of sexual function. Androgenic adverse effects such as acne and hirsutism were significantly greater in incidence with testosterone therapy, whereas no significant differences in “increase in facial hair, alopecia, voice deepening, urinary symptoms, breast pain, headache, site reaction to the patch, total adverse events, serious adverse events, reasons for withdrawal from the study, and the number of women who completed the study” were seen relative to controls.

Although testosterone has been found to be effective at improving sexual function in postmenopausal women, the doses employed have been supraphysiological. In contrast to these high doses, there is little support for the notion that testosterone is a critical hormone for sexual desire and function in women under normal physiological circumstances. Low doses of testosterone resulting in physiological levels of testosterone (<50 ng/dL) have not been found to significantly increase sexual desire or function in women in most studies. Similarly, there appears to be little or no relationship between total or free testosterone levels in the normal physiological range and sexual desire in premenopausal women. Only high doses of testosterone resulting in supraphysiological levels of testosterone (>50 ng/dL) significantly increase sexual desire in women, with levels of testosterone of 80 to 150 ng/dL “slightly” increasing sex drive. In accordance, men experience sexual dysfunction at testosterone levels of below 300 ng/dL, and men that have levels of testosterone of approximately 200 ng/dL frequently experience such problems. The high doses of testosterone required to increase sexual desire in women may have a significant risk of masculinization with long-term therapy. For this reason, and due to the unknown health effects and safety of testosterone therapy, its use may be inappropriate. In 2003, the FDA rejected Intrinsa, a 300 µg/day testosterone patch for the treatment of sexual dysfunction in postmenopausal women. The reasons cited were limited efficacy (about one additional sexually satisfying event per month), concerns about safety and potential adverse effects with long-term therapy, and concerns about inappropriate off-label use. It appears that in women, rather than testosterone, estradiol may be the most important hormone involved in sexual desire, although data on the clinical use of estradiol to increase sexual desire in women is limited.

There are no testosterone products approved for use in women in the United States and many other countries. There are approved testosterone products for women in Australia (where it is considered a drug of dependence, medicines that are subject to misuse and trafficking.) and some European countries. Testosterone pellet implants are approved for use in postmenopausal women in the United Kingdom. Testosterone products for men can be used off-label in women in the United States. Alternatively, testosterone products for women are available from compounding pharmacies in the United States, although such products are unregulated and manufacturing quality is not ensured.

Testosterone has been marketed for use by oral, sublingual, buccal, intranasal, transdermal (patches), topical (gels), intramuscular (injection), and subcutaneous (implant administration. It is provided unmodified and as a testosterone ester such as testosterone cypionate, testosterone enanthate, testosterone propionate, or testosterone undecanoate, which act as prodrugs of testosterone. The most common route of administration for testosterone is by intramuscular injection. However, it has been reported that AndroGel, a transdermal gel formulation of testosterone, has become the most popular form of testosterone in androgen replacement therapy for hypogonadism in the United States.

Testosterone is used as a form of doping among athletes in order to improve performance. Testosterone is classified as an anabolic agent and is on the World Anti-Doping Agency (WADA) List of Prohibited Substances and Methods. Hormone supplements cause the endocrine system to adjust its production and lower the natural production of the hormone, so when supplements are discontinued, natural hormone production is lower than it was originally.

Anabolic–androgenic steroids (AAS), including testosterone and its esters, have also been taken to enhance muscle development, strength, or endurance. They do so directly by increasing the muscles’ protein synthesis. As a result, muscle fibers become larger and repair faster than the average person’s.

After a series of scandals and publicity in the 1980s (such as Ben Johnson’s improved performance at the 1988 Summer Olympics), prohibitions of AAS use were renewed or strengthened by many sports organizations. Testosterone and other AAS were designated a “controlled substance” by the United States Congress in 1990, with the Anabolic Steroid Control Act. Their use is seen as an issue in modern sport, particularly given the lengths to which athletes and professional laboratories go to in trying to conceal such use from sports regulators. Steroid use once again came into the spotlight as a result of Canadian professional wrestler Chris Benoit’s double murder-suicide in 2007; however, there is no evidence implicating steroid use as a factor in the incident.[citation needed]

Some female athletes may have naturally higher levels of testosterone than others, and may be asked to consent to sex verification and either surgery or drugs to decrease testosterone levels. This has proven contentious, with the Court of Arbitration for Sport suspending the IAAF policy due to insufficient evidence of a link between high androgen levels and improved athletic performance.

A number of methods for detecting testosterone use by athletes have been employed, most based on a urine test. These include the testosterone/epitestosterone ratio (normally less than 6), the testosterone/luteinizing hormone ratio and the carbon-13/carbon-12 ratio (pharmaceutical testosterone contains less carbon-13 than endogenous testosterone). In some testing programs, an individual’s own historical results may serve as a reference interval for interpretation of a suspicious finding. Another approach being investigated is the detection of the administered form of testosterone, usually an ester, in hair.

Absolute contraindications of testosterone include prostate cancer, elevated hematocrit (>54%), uncontrolled congestive heart failure, various other cardiovascular diseases, and uncontrolled obstructive sleep apnea. Breast cancer is said by some sources to be an absolute contraindication of testosterone therapy, but androgens including testosterone have also actually been used to treat breast cancer. Relative contraindications of testosterone include elevated prostate-specific antigen (PSA) in men with a high risk of prostate cancer due to ethnicity or family history, severe lower urinary tract symptoms, and elevated hematocrit (>50%).

Adverse effects may also include minor side effects such as oily skin, acne, and seborrhea, as well as loss of scalp hair, which may be prevented or reduced with 5α-reductase inhibitors. In women, testosterone can produce hirsutism (excessive facial/body hair growth), deepening of the voice, and other signs of virilization. Exogenous testosterone may cause suppression of spermatogenesis in men, leading to, in some cases, reversible infertility. Gynecomastia and breast tenderness may occur with high dosages of testosterone due to peripheral conversion of testosterone by aromatase into excessive amounts of the estrogen estradiol. Testosterone treatment, particularly in high dosages, can also be associated with mood changes, increased aggression, increased sex drive, spontaneous erections, and nocturnal emissions.

Other side effects include increased hematocrit, which can require venipuncture in order to treat, and exacerbation of sleep apnea.

The FDA stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke. They have also required the label include concerns about abuse and dependence.

Injectable forms of testosterone can cause a lung problem called pulmonary oil microembolism (POME). Symptoms of POME include cough, shortness of breath, tightening of the throat, chest pain, sweating, dizziness, and fainting. A postmarketing analysis by the manufacturer of Aveed (testosterone undeconate injection) found that POME occurred at a rate of less than 1% per injection per year for Aveed.

Adverse effects of testosterone supplementation may include increased cardiovascular events (including strokes and heart attacks) and deaths based on three peer-reviewed studies involving men taking testosterone replacement. In addition, an increase of 30% in deaths and heart attacks in older men has been reported. Due to an increased incidence of adverse cardiovascular events compared to a placebo group, a Testosterone in Older Men with Mobility Limitations (TOM) trial (a National Institute of Aging randomized trial) was halted early by the Data Safety and Monitoring Committee. On January 31, 2014, reports of strokes, heart attacks, and deaths in men taking FDA-approved testosterone-replacement led the FDA to announce that it would be investigating the issue. Later, in September 2014, the FDA announced, as a result of the “potential for adverse cardiovascular outcomes”, a review of the appropriateness and safety of Testosterone Replacement Therapy (TRT). The FDA now requires warnings in the drug labeling of all approved testosterone products regarding deep vein thrombosis and pulmonary embolism.

Up to the year 2010, studies had not shown any effect on the risk of death, prostate cancer or cardiovascular disease; more recent studies, however, do raise concerns. A 2013 study, published in the Journal of the American Medical Association, reported “the use of testosterone therapy was significantly associated with increased risk of adverse outcomes.” The study began after a previous, randomized, clinical trial of testosterone therapy in men was stopped prematurely “due to adverse cardiovascular events raising concerns about testosterone therapy safety.”

However, when given to men with hypogonadism in the short- and medium-term, testosterone replacement therapy does not increase the risk of cardiovascular events (including strokes and heart attacks and other heart diseases). The long-term safety of the therapy is not known yet.

Testosterone in the presence of a slow-growing prostate cancer is assumed to increase its growth rate. However, the association between testosterone supplementation and the development of prostate cancer is unproven. Nevertheless, physicians are cautioned about the cancer risk associated with testosterone supplementation.

Testosterone may accelerate pre-existing prostate cancer growth in individuals who have undergone androgen deprivation. It is recommended that physicians screen for prostate cancer with a digital rectal exam and prostate-specific antigen (PSA) level before starting therapy, and monitor PSA and hematocrit levels closely during therapy.

Ethnic groups have different rates of prostate cancer. Differences in sex hormones, including testosterone, have been suggested as an explanation for these differences. This apparent paradox can be resolved by noting that prostate cancer is very common. In autopsies, 80% of 80-year-old men have prostate cancer.

Testosterone is contraindicated in pregnancy and not recommended during breastfeeding. Androgens like testosterone are teratogens and are known to cause fetal harm, such as producing virilization and ambiguous genitalia.

5α-Reductase inhibitors like finasteride and dutasteride can slightly increase circulating levels of testosterone by inhibiting its metabolism. However, these drugs do this via prevention of the conversion of testosterone into its more potent metabolite dihydrotestosterone (DHT), and this results in dramatically reduced circulating levels of DHT (which circulates at much lower relative concentrations). In addition, local levels of DHT in so-called androgenic (5α-reductase-expressing) tissues are also markedly reduced, and this can have a strong impact on certain effects of testosterone. For instance, growth of body and facial hair and penile growth induced by testosterone may be inhibited by 5α-reductase inhibitors, and this could be considered undesirable in the context of, for instance, puberty induction. On the other hand, 5α-reductase inhibitors may prevent or reduce adverse androgenic side effects of testosterone like scalp hair loss, oily skin, acne, and seborrhea. In addition to the prevention of testosterone conversion into DHT, 5α-reductase inhibitors also prevent the formation of neurosteroids like 3α-androstanediol from testosterone, and this may have neuropsychiatric consequences in some men.

Aromatase inhibitors like anastrozole prevent the conversion of testosterone into estradiol by aromatase. As only a very small fraction of testosterone is converted into estradiol, this does not affect testosterone levels, but it can prevent estrogenic side effects like gynecomastia that can occur when testosterone is administered at relatively high dosages. However, estradiol exerts negative feedback on the hypothalamic–pituitary–gonadal axis and, for this reason, prevention of its formation can reduce this feedback and disinhibit gonadal production of testosterone, which in turn can increase levels of endogenous testosterone. Testosterone therapy is sometimes combined with an aromatase inhibitor for men with secondary hypogonadism who wish to conceive children with their partners.

Inhibitors and inducers of cytochrome P450 enzymes like CYP3A4 have been associated with little or no effect on circulating testosterone levels.

Antiandrogens like cyproterone acetate, spironolactone, and bicalutamide can block the androgenic and anabolic effects of testosterone. Estrogens can reduce the effects of testosterone by increasing the hepatic production and in turn circulating levels of sex hormone-binding globulin (SHBG), a carrier protein that binds to and occupies androgens like testosterone and DHT, and thereby reducing free concentrations of these androgens.

Testosterone is a high affinity ligand for and agonist of the nuclear androgen receptor (AR). In addition, testosterone binds to and activates membrane androgen receptors (mARs) such as GPRC6A and ZIP9. Testosterone is also potentiated via transformation by 5α-reductase into the more potent androgen DHT in so-called androgenic tissues such as the prostate gland, seminal vesicles, skin, and hair follicles. In contrast to the case of testosterone, such potentiation occurs to a reduced extent or not at all with most synthetic AAS (as well as with DHT), and this is primarily responsible for the dissociation of anabolic and androgenic effects with these agents. In addition to DHT, testosterone is converted at a rate of approximately 0.3% into the estrogen estradiol via aromatase. This occurs in many tissues, especially adipose tissue, the liver, and the brain, but primarily in adipose tissue. Testosterone, after conversion into DHT, is also metabolized into 3α-androstanediol, a neurosteroid and potent positive allosteric modulator of the GABAA receptor, and 3β-androstanediol, a potent and preferential agonist of the ERβ. These metabolites, along with estradiol, may be involved in a number of the effects of testosterone in the brain, including its antidepressant, anxiolytic, stress-relieving, rewarding, and pro-sexual effects.

The ARs are expressed widely throughout the body, including in the penis, testicles, epididymides, prostate gland, seminal vesicles, fat, skin, bone, bone marrow, muscle, larynx, heart, liver, kidneys, pituitary gland, hypothalamus, and elsewhere throughout the brain. Through activation of the ARs (as well as the mARs), testosterone has many effects, including the following:

Testosterone can be taken by a variety of different routes of administration. These include oral, buccal, sublingual, intranasal, transdermal (gels, creams, patches), rectal suppositories), by intramuscular or subcutaneous injection (in oil or aqueous), and as a subcutaneous implant. The pharmacokinetics of testosterone, including its bioavailability, circulating testosterone levels, metabolism, biological half-life, and other parameters, differ by route of administration.

Testosterone is a naturally occurring androstane steroid and is also known by the chemical name androst-4-en-17β-ol-3-one. It has a double bond between the C4 and C5 positions (making it an androstene), a ketone group at the C3 position, and a hydroxyl (alcohol) group at the C17β position.

Testosterone esters are substituted at the C17β position with a lipophilic fatty acid ester moiety of varying chain length. Major testosterone esters include testosterone cypionate, testosterone enanthate, testosterone propionate, and testosterone undecanoate. A C17β ether prodrug of testosterone, cloxotestosterone acetate, has also been marketed, although it is little known and is used very rarely or no longer. Another C17β ether prodrug of testosterone, silandrone, also exists but was never marketed, and is notable in that it is orally active. In addition to ester and ether prodrugs, androgen prohormones or precursors of testosterone, such as dehydroepiandrosterone (DHEA), androstenediol, and androstenedione, exist as well, and convert into testosterone to variable extents upon oral ingestion. Unlike testosterone ester and ether prodrugs however, these prohormones are only weakly androgenic/anabolic.

All synthetic AAS are derivatives of testosterone. Prominent examples include nandrolone (19-nortestosterone), metandienone (17α-methyl-δ1-testosterone), and stanozolol (a 17α-alkylated derivative of DHT). Unlike testosterone, AAS that are 17α-alkylated, like metandienone and stanozolol, are orally active. This is due to steric hindrance of C17β-position metabolism during the first-pass through the liver. In contrast, most AAS that are not 17α-alkylated, like nandrolone, are not active orally, and must instead be administered via intramuscular injection. This is almost always in ester form; for instance, in the case of nandrolone, as nandrolone decanoate or nandrolone phenylpropionate.

Testosterone was first isolated and synthesized in 1935. Shortly thereafter, in 1937, testosterone first became commercially available as a pharmaceutical drug in the form of pellets and then in ester form for intramuscular injection as the relatively short-acting testosterone propionate. Methyltestosterone, one of the first synthetic AAS and orally active androgens, was introduced in 1935, but was associated with hepatotoxicity and eventually became largely medically obsolete. In the mid-1950s, the longer-acting testosterone esters testosterone enanthate and testosterone cypionate were introduced. They largely superseded testosterone propionate and became the major testosterone esters used medically for over half a century. In the 1970s, testosterone undecanoate was introduced for oral use in Europe, although intramuscular testosterone undecanoate had already been in use in China for several years. Intramuscular testosterone undecanoate was not introduced in Europe and the United States until much later (in the early to mid 2000s and 2014, respectively).

The history of testosterone as a medication has been reviewed.

In the US in the 2000s, companies and figures in the popular media have heavily marketed notions of “andropause” as something parallel to menopause; these notions have been rejected by the medical community. Additionally, advertising from drug companies selling testosterone and human growth hormone, as well as dietary supplement companies selling all kinds of “boosters” for aging men, have emphasized the “need” of middle-aged or ageing men for testosterone. There is a medical condition called late-onset hypogonadism; according to Thomas Perls and David J. Handelsman, writing in a 2015 editorial in the Journal of the American Geriatrics Society, it appears that this condition is overdiagnosed and overtreated. Perls and Handelsman note that in the US, “sales of testosterone increased from $324 million in 2002 to $2 billion in 2012, and the number of testosterone doses prescribed climbed from 100 million in 2007 to half a billion in 2012, not including the additional contributions from compounding pharmacies, Internet, and direct-to-patient clinic sales.”

Testosterone is the generic name of testosterone in English and Italian and the INN, USAN, USP, BAN, and DCIT of the drug, while testostérone is its French name and the DCF. It is also referred to in Latin as testosteronum, in Spanish and Portuguese as testosterona, and in German, Dutch, and Russian and other Slavic languages as testosteron. The Cyrillic script of testosterone is тестостерон.

Testosterone is marketed under a large number of brand names throughout the world. Major brand names of testosterone and/or its esters include Andriol, Androderm, AndroGel, Axiron, Delatestryl, Depo-Testosterone, Intrinsa, Nebido, Omnadren, Primoteston, Sustanon, Testim, TestoGel, TestoPatch, Testoviron, and Tostran.

As of November 2016, unmodified (non-esterified) testosterone is available in the United States in the following formulations:

And the following ester prodrugs of testosterone are available in the United States in oil solutions for intramuscular injection:

Unmodified testosterone was also formerly available for intramuscular injection but was discontinued.

Testosterone cypionate and testosterone enanthate were formerly available in combination with estradiol cypionate and estradiol valerate, respectively, under the brand names Depo-Testadiol and Ditate-DS, respectively, as oil solutions for intramuscular injection, but these formulations have been discontinued.

Unlike in Europe, Canada, and much of the rest of the world, oral testosterone undecanoate is not available in the United States.

As of November 2016, testosterone is available in Canada in the form of topical gels (AndroGel, Testim), topical solutions (Axiron), transdermal patches (Androderm), and intranasal gels (Natesto). Testosterone cypionate (Depo-Testosterone, Testosterone Cypionate (generic)), testosterone enanthate (Delatestryl, PMS-Testosterone Enanthate), and testosterone propionate (Testosterone Propionate (generic)) are available as oil solutions for intramuscular injection and testosterone undecanoate (Andriol, PMS-Testosterone, Taro-Testosterone) is available in the form of oral capsules. Testosterone buccal tablets and pellet implants do not appear to be available in Canada.

Testosterone and/or its esters are widely available in countries throughout the world in a variety of formulations.

Testosterone and its esters, along with other AAS, are prescription-only controlled substances in many countries throughout the world. In the United States, they are Schedule III drugs under the Controlled Substances Act, in Canada, they are Schedule IV drugs under the Controlled Drugs and Substances Act, and in the United Kingdom, they are Class C drugs under the Misuse of Drugs Act.

As of 2014, a number of lawsuits are underway against manufacturers of testosterone, alleging a significantly increased rate of stroke and heart attack in elderly men who use testosterone supplementation.

There are many known cases of doping in sports with testosterone and its esters by professional athletes.

Testosterone has been used to treat depression in men who are of middle age with low testosterone. However, a 2014 review showed no benefit on the mood of the men with normal levels of testosterone or on the mood of the older men with low testosterone. Conversely, a 2009 review found that testosterone had an antidepressant effect in men with depression, especially those with hypogonadism, HIV/AIDS, and in the elderly.

Testosterone replacement can significantly improve exercise capacity, muscle strength and reduce QT intervals in men with chronic heart failure (CHF). Over the 3 to 6-month course of the studies reviewed, testosterone therapy appeared safe and generally effective, and (ruling out prostate cancer) the authors found no justification to absolutely restrict its use in men with CHF. A similar 2012 review also found increased exercise capacity and reasoned the benefits generlizable to women. However, both reviews advocate larger, longer term, randomized controlled trials.

Testosterone, as esters such as testosterone undecanoate or testosterone buciclate, has been studied and promoted as a male contraceptive analogous to estrogen-based contraceptives in women. Otherwise considered an adverse effect of testosterone, reduced spermatogenesis can be further suppressed with the addition of a progestin such as norethisterone enanthate or levonorgestrel butanoate, improving the contraceptive effect.

Testosterone is under development in a low-dose intranasal formulation for the treatment of anorgasmia in women.

Testosterone therapy may improve the management of type 2 diabetes. Low testosterone has been associated with the development of Alzheimer’s disease.

Topical androgens like testosterone have been used and studied in the treatment of cellulite in women.

 

Research has found that anxiety is one of the leading symptoms created by marijuana in users, and that there is a correlation between Androderm and Weed and an increase in anxiety.

 

Anyone mixing Androderm and weed is likely to experience side effects. This happens with all medications whether weed or Androderm is mixed with them. Side effects can be harmful when mixing Androderm and weed. Doctors are likely to refuse a patient a Androderm prescription if the individual is a weed smoker or user. Of course, this could be due to the lack of studies and research completed on the mixing of Androderm and Weed.

 

Heavy, long-term weed use is harmful for people. It alters the brain’s functions and structure, and all pharmaceuticals and drugs including Androderm are designed to have an impact on the brain. There is a misplaced belief that pharmaceuticals and medication work by treating only the parts of the body affected yet this is obviously not the case in terms of Androderm. For example, simple painkiller medication does not heal the injury, it simply interrupts the brains functions to receive the pain cause by the injury. To say then that two drugs, Androderm and Weed, dol not interact is wrong. There will always be an interaction between Androderm and Weed in the brain11.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/.

 

One of the milder side effects of mixing Androderm and Weed is Scromiting. This condition, reportedly caused by mixing Androderm and Weed, describes a marijuana-induced condition where the user experiences episodes of violent vomiting, which are often so severe and painful that they cause the person to scream. The medical term for Scromiting by mixing Androderm and Weed is cannabinoid hyperemesis syndrome, or CHS.  For these reasons, some people choose to quit smoking weed.

 

It was first included in scientific reports in 2004. Since then, researchers have determined that Scromiting is the result of ongoing, long-term use of marijuana—particularly when the drug contains high levels of THC, marijuana’s main psychoactive ingredient. Some experts believe that the receptors in the gut become overstimulated by THC, thus causing the repeated cycles of vomiting.

 

In the long run, a person can become even more depressed. There is a belief that marijuana is all-natural and not harmful to a person’s health. This is not true and Androderm and weed can cause health issues the more a person consumes it.

 

How does Weed effect the potency of Androderm?

 

The way in which the body absorbs and process Androderm may be affected by weed. Therefore, the potency of the Androderm may be less effective. Marijuana inhibits the metabolization of Androderm. Not having the right potency of Androderm means a person may either have a delay in the relief of their underlying symptoms.

 

A person seeking Androderm medication that uses weed should speak to their doctor. It is important the doctor knows about a patient’s weed use, so they can prescribe the right Androderm medication and strength. Or depending on level of interactions they may opt to prescribe a totally different medication. It is important for the doctor to know about their patient’s marijuana use. Weed is being legalized around the US, so doctors should be open to speaking about a patient’s use of it.

 

Sideffects of Androderm and Weed

 

Many individuals may not realize that there are side effects and consequences to mixing Androderm and Weed such as:

 

  • Dizziness
  • Sluggishness
  • Drowsiness
  • Shortness of breath
  • Itching
  • Hives
  • Palpitations
  • Respiratory Depression
  • Cardiac Arrest
  • Coma
  • Seizures
  • Death

 

Interestingly, it is impossible to tell what effect mixing this substance with Weed will have on an individual due to their own unique genetic make up and tolerance. It is never advisable to mix Androderm and Weed due to the chances of mild, moderate and severe side effects. If you are having an adverse reaction from mixing Androderm and Weed it’s imperative that you head to your local emergency room. Even mixing a small amount of Androderm and Weed is not recommended.

 

Taking Androderm and Weed together

 

People who take Androderm and Weed together will experience the effects of both substances. Technically, the specific effects and reactions that occur due to frequent use of Androderm and weed depend on whether you consume more weed in relation to Androderm or more Androderm in relation to weed.

 

The use of significantly more weed and Androderm will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and Androderm may experience effects such as:

 

  • reduced motor reflexes from Androderm and Weed
  • dizziness from Weed and Androderm
  • nausea and vomiting due to Androderm and Weed

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Androderm leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Mixing weed and Androderm

 

The primary effect of weed is influenced by an increase in the concentration of the inhibitory neurotransmitter GABA, which is found in the spinal cord and brain stem, and by a reduction in its effect on neuronal transmitters. When weed is combined with Androderm this primary effect is exaggerated, increasing the strain on the body with unpredictable results.

 

Weed and Androderm affects dopamine levels in the brain, causing the body both mental and physical distress. Larger amounts of Androderm and weed have a greater adverse effect yet leading medical recommendation is that smaller does of Androderm can be just as harmful and there is no way of knowing exactly how Androderm and weed is going to affect an individual before they take it.

 

Taking Androderm and weed together

 

People who take Androderm and weed together will experience the effects of both substances. The use of significantly more Androderm with weed will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and Androderm may experience effects such as:

 

  • reduced motor reflexes from Androderm and weed
  • dizziness from weed and Androderm
  • nausea and vomiting of the Androderm

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Androderm leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Weed Vs Androderm

 

Taking Androderm in sufficient quantities increases the risk of a heart failure. Additionally, people under the influence of Androderm and weed may have difficulty forming new memories. With weed vs Androderm in an individual’s system they become confused and do not understand their environment. Due to the synergistic properties of Androderm when mixed with weed it can lead to confusion, anxiety, depression and other mental disorders. Chronic use of Androderm and weed can lead to permanent changes in the brain22.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/.

 

Androderm Vs Weed

 

Studies investigating the effects of drugs such as Androderm and weed have shown that the potential for parasomnia (performing tasks in sleep) is dramatically increased when Androderm and weed are combined. Severe and dangerous side effects can occur when medications are mixed in the system, and sleep disorders are a common side effect of taking weed and Androderm together.

 

When a small to medium amount of weed is combined with Androderm, sleep disorders such as sleep apnea can occur. According to the latest data from the US Centers for Disease Control and Prevention (CDC) most ER visits and hospitalizations caused by too much weed were associated with other substances such as Androderm.

 

How long after taking Androderm can I smoke weed or take edibles?

 

To avoid any residual toxicity it is advisable to wait until the Androderm has totally cleared your system before taking weed, even in small quantities.

 

Overdose on Androderm and weed

 

In the case of Overdose on Androderm or if you are worried after mixing Androderm and weed, call a first responder or proceed to the nearest Emergency Room immediately.

 

If you are worried about someone who has taken too much Androderm or mixed weed with Androderm then call a first responder or take them to get immediate medical help. The best place for you or someone you care about in the case of a medical emergency is under medical supervision. Be sure to tell the medical team that there is a mix of Androderm and weed in their system.

 

Excessive Weed intake and result in scromiting, chs, and anxiety disorder.  It is advisable to quit vaping weed if you are feeling these symptoms.

Mixing Androderm and weed and antidepressants

 

Weed users feeling depressed and anxious may be prescribed antidepressant medication. There are some antidepressant users who also use Androderm and weed. These individuals may not realize that there are side effects and consequences to consuming both Androderm, marijuana and a range of antidepressants.

 

Studies on weed, Androderm and antidepressants is almost nil. The reason for so little information on the side effects of the two is mostly down to marijuana being illegal in most places – although a number of states in the United States have legalized the drug.

 

Self-medicating with Weed and Androderm

 

A lot of people suffer from depression caused by weed and Androderm. How many? According to Anxiety and Depression Association of America (ADAA), in any given year, it is estimated that nearly 16 million adults experience depression. Unfortunately, that number is likely to be wrong due to under reporting. Many people do not report suffering from depression because they do not want to be looked at as suffering from a mental illness. The stigmas around mental health continue and people do not want to be labeled as depressed.

 

Potential side effects from mixing Androderm and weed

 

Quitting weed to take Androderm

 

Medical professionals say an individual prescribed or taking Androderm should not stop using weed cold turkey.  Withdrawal symptoms can be significant. Heavy pot users should especially avoid going cold turkey. The side effects of withdrawal from weed include anxiety, irritability, loss of sleep, change of appetite, and depression by quitting weed cold turkey and starting to take Androderm.

 

A person beginning to use Androderm should cut back on weed slowly. While reducing the amount of weed use, combine it with mindfulness techniques and/or yoga. Experts stress that non-medication can greatly improve a person’s mood.

 

Weed and Androderm can affect a person in various ways. Different types of marijuana produce different side effects. Side effects of weed and Androderm may include:

 

  • loss of motor skills
  • poor or lack of coordination
  • lowered blood pressure
  • short-term memory loss
  • increased heart rate
  • increased blood pressure
  • anxiety
  • paranoia
  • increased energy
  • increased motivation

 

Mixing Androderm and weed can also produce hallucinations in users. This makes marijuana a hallucinogenic for some users. Weed creates different side effects in different people, making it a very potent drug. Now, mixing Androderm or other mental health drugs with weed can cause even more unwanted side effects.

 

Mixing drugs and weed conclusion

 

Long-term weed use can make depression and anxiety worse. In addition, using marijuana can prevent Androderm from working to their full potential33.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/. Weed consumption should be reduced gradually to get the most out of prescription medication. Marijuana is a drug and it is harmful to individual’s long-term health. Weed has many side effects and the consequences are different to each person who uses it, especially when mixed with Androderm.

 

If you take Androderm, and also drink Alcohol or MDMA, you can research the effects of Androderm and Alcohol , Androderm and Cocaine as well as Androderm and MDMA here.

 

To find the effects of other drugs and weed refer to our Weed and Other Drugs Index A to L or our Weed and Other Drugs Index M-Z.

Or you could find what you are looking for in our Alcohol and Interactions with Other Drugs index A to L or Alcohol and Interactions with Other Drugs index M to Z , Cocaine and Interactions with Other Drugs index A to L or Cocaine and Interactions with Other Drugs index M to Z or our MDMA and Interactions with Other Drugs Index A to L or MDMA and Interactions with Other Drugs Index M to Z.

 

Androderm and Weed

Androderm and Weed

Counselling for Weed Addiction; Low Cost - Qualified Therapists - Available Now - 20% Off

We may make a commission if you purchase anything via the adverts or links on this page.

 

Betterhelp is for anyone suffering from mental health issues. Whether you suffer from anxiety, depression, weed addiction, eating disorders, or just need someone to speak to, Betterhelp can pair you with a qualified therapist.

 

In the wake of the pandemic, an increasing number of people have sought out therapeutic and conseling services to help with weed cessation. Better Help has seen a massive rise in people seeking help over the last two to three years.

 

If you or someone you care about is smoking or ingesting a level of weed that makes their life become unmanageable, Betterhelp has counselors and therapists on hand to help for less that $90 per week.

Specializations | Burnout, Anxiety, Depression, Stress, Anger Management, Dependencies, Grief, Seasonal Depressive Disorder, Life Crisis, Smoking Cessation, Weed Cessation (among others)

 

Betterhelp Cost | The standard fee for BetterHelp therapy is only $60 to $90 per week or $240 to $360 per month.

 

Key Takeaways |

  • Largest online therapy platform
  • Low cost
  • Good for stopping weed
  • Messaging
  • Live video
  • Phone calls
  • Live chat
  • No lock in contracts
  • Cancel anytime
  • Licensed and accredited therapists

 

Discounts Available | We have negotiated a generous 20% discount for readers of our website. Press Here to get 20% Off

 

  • 1
    1.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/
  • 2
    2.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/
  • 3
    3.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/