Amikin and Weed

{Fulldrug} and Weed

Authored by Pin Ng PhD

Edited by Hugh Soames

Advertising: We may earn a commission if you buy anything via our advertising or external links

Amikin and Weed

 

Most people who consume marijuana do so for its mood-altering and relaxing abilities. Weed gives people a high and allows them to relax. However, heavy consumption of weed can cause unwanted results. It can increase the anxiety and depression a person experiences, and it can interact with certain other drugs including Amikin. It is important to remember that interactions do occur with all types of drugs, to a great or lesser extent and this article details the interactions of mixing Amikin and Weed.

 

Mixing Amikin and Weed

 

Amikacin is an antibiotic medication used for a number of bacterial infections. This includes joint infections, intra-abdominal infections, meningitis, pneumonia, sepsis, and urinary tract infections. It is also used for the treatment of multidrug-resistant tuberculosis. It is used by injection into a vein using an IV or into a muscle.

Amikacin, like other aminoglycoside antibiotics, can cause hearing loss, balance problems, and kidney problems. Other side effects include paralysis, resulting in the inability to breathe. If used during pregnancy it may cause permanent deafness in the baby. Amikacin works by blocking the function of the bacteria’s 30S ribosomal subunit, making it unable to produce proteins.

Amikacin was patented in 1971, and came into commercial use in 1976. It is on the World Health Organization’s List of Essential Medicines. It is derived from kanamycin.

Amikacin is most often used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria, especially Pseudomonas, Acinetobacter, Enterobacter, E. coli, Proteus, Klebsiella, and Serratia. The only Gram-positive bacteria that amikacin strongly affects are Staphylococcus and Nocardia. Amikacin can also be used to treat non-tubercular mycobacterial infections and tuberculosis (if caused by sensitive strains) when first-line drugs fail to control the infection. It is rarely used alone.

It is often used in the following situations:

Amikacin may be combined with a beta-lactam antibiotic for empiric therapy for people with neutropenia and fever.

A liposome inhalation suspension is also available and approved to treat Mycobacterium avium complex (MAC) in the United States, and in the European Union.

Amikacin liposome inhalation suspension is the first drug approved under the US limited population pathway for antibacterial and antifungal drugs (LPAD pathway). It also was approved under the accelerated approval pathway. The US Food and Drug Administration (FDA) granted the application for amikacin liposome inhalation suspension fast track, breakthrough therapy, priority review, and qualified infectious disease product (QIDP) designations. The FDA granted approval of Arikayce to Insmed, Inc.

The safety and efficacy of amikacin liposome inhalation suspension, an inhaled treatment taken through a nebulizer, was demonstrated in a randomized, controlled clinical trial where patients were assigned to one of two treatment groups. One group of patients received amikacin liposome inhalation suspension plus a background multi-drug antibacterial regimen, while the other treatment group received a background multi-drug antibacterial regimen alone. By the sixth month of treatment, 29 percent of patients treated with amikacin liposome inhalation suspension had no growth of mycobacteria in their sputum cultures for three consecutive months compared to 9 percent of patients who were not treated with amikacin liposome inhalation suspension.

Amikacin should be used in smaller doses in the elderly, who often have age-related decreases in kidney function, and children, whose kidneys are not fully developed yet. It is considered pregnancy category D in both the United States and Australia, meaning they have a probability of harming the fetus. Around 16% of amikacin crosses the placenta; while the half-life of amikacin in the mother is 2 hours, it is 3.7 hours in the fetus. A pregnant woman taking amikacin with another aminoglycoside has a possibility of causing congenital deafness in her child. While it is known to cross the placenta, amikacin is only partially secreted in breast milk.

In general, amikacin should be avoided in infants. Infants also tend to have a larger volume of distribution due to their higher concentration of extracellular fluid, where aminoglycosides reside.

The elderly tend to have amikacin stay longer in their system; while the average clearance of amikacin in a 20-year-old is 6 L/hr, it is 3 L/hr in an 80-year-old.

Clearance is even higher in people with cystic fibrosis.

In people with muscular disorders such as myasthenia gravis or Parkinson’s disease, amikacin’s paralytic effect on neuromuscular junctions can worsen muscle weakness.

Side-effects of amikacin are similar to those of other aminoglycosides. Kidney damage and ototoxicity (which can lead to hearing loss) are the most important effects, occurring in 1–10% of users. The nephro- and ototoxicity are thought to be due to aminoglycosides’ tendency to accumulate in the kidneys and inner ear.

Amikacin can cause neurotoxicity if used at a higher dose or for longer than recommended. The resulting effects of neurotoxicity include vertigo, numbness, tingling of the skin (paresthesia), muscle twitching, and seizures. Its toxic effect on the 8th cranial nerve causes ototoxicity, resulting in loss of balance and, more commonly, hearing loss. Damage to the cochlea, caused by the forced apoptosis of the hair cells, leads to the loss of high-frequency hearing and happens before any clinical hearing loss can be detected. Damage to the ear vestibules, most likely by creating excessive oxidative free radicals. It does so in a time-dependent rather than dose-dependent manner, meaning that risk can be minimized by reducing the duration of use.

Amikacin causes nephrotoxicity (damage to the kidneys), by acting on the proximal renal tubules. It easily ionizes to a cation and binds to the anionic sites of the epithelial cells of the proximal tubule as part of receptor-mediated pinocytosis. The concentration of amikacin in the renal cortex becomes ten times that of amikacin in the plasma; it then most likely interferes with the metabolism of phospholipids in the lysosomes, which causes lytic enzymes to leak into the cytoplasm. Nephrotoxicity results in increased serum creatinine, blood urea nitrogen, red blood cells, and white blood cells, as well as albuminuria (increased output of albumin in the urine), glycosuria (excretion of glucose into the urine), decreased urine specific gravity, and oliguria (decrease in overall urine output). It can also cause urinary casts to appear. The changes in renal tubular function also change the electrolyte levels and acid-base balance in the body, which can lead to hypokalemia and acidosis or alkalosis. Nephrotoxicity is more common in those with pre-existing hypokalemia, hypocalcemia, hypomagnesemia, acidosis, low glomerular filtration rate, diabetes mellitus, dehydration, fever, and sepsis, as well as those taking antiprostaglandins. The toxicity usually reverts once the antibiotic course has been completed, and can be avoided altogether by less frequent dosing (such as once every 24 hours rather than once every 8 hours).

Amikacin can cause neuromuscular blockade (including acute muscular paralysis) and respiratory paralysis (including apnea).

Rare side effects (occurring in fewer than 1% of users) include allergic reactions, skin rash, fever, headaches, tremor, nausea and vomiting, eosinophilia, arthralgia, anemia, hypotension, and hypomagnesemia. In intravitreous injections (where amikacin is injected into the eye), macular infarction can cause permanent vision loss.

The amikacin liposome inhalation suspension prescribing information includes a boxed warning regarding the increased risk of respiratory conditions including hypersensitivity pneumonitis (inflamed lungs), bronchospasm (tightening of the airway), exacerbation of underlying lung disease and hemoptysis (spitting up blood) that have led to hospitalizations in some cases. Other common side effects in patients taking amikacin liposome inhalation suspension are dysphonia (difficulty speaking), cough, ototoxicity (damaged hearing), upper airway irritation, musculoskeletal pain, fatigue, diarrhea and nausea.

Amikacin should be avoided in those who are sensitive to any aminoglycoside, as they are cross-allergenic (that is, an allergy to one aminoglycoside also confers hypersensitivity to other aminoglycosides). It should also be avoided in those sensitive to sulfite (seen more among people with asthma), since most amikacin usually comes with sodium metabisulfite, which can cause an allergic reaction.

In general, amikacin should not be used with or just before/after another drug that can cause neurotoxicity, ototoxicity, or nephrotoxicity. Such drugs include other aminoglycosides; the antiviral acyclovir; the antifungal amphotericin B; the antibiotics bacitracin, capreomycin, colistin, polymyxin B, and vancomycin; and cisplatin, which is used in chemotherapy.

Amikacin should not be used with neuromuscular blocking agents, as they can increase muscle weakness and paralysis.

Amikacin can be inactivated by other beta-lactams, though not to the extent as other aminoglycosides, and is still often used with penicillins (a type of beta-lactam) to create an additive effect against certain bacteria, and carbapenems, which can have a synergistic effect against some Gram-positive bacteria. Another group of beta-lactams, the cephalosporins, can increase the nephrotoxicity of aminoglycoside as well as randomly elevating creatinine levels. The antibiotics chloramphenicol, clindamycin, and tetracycline have been known to inactivate aminoglycosides in general by pharmacological antagonism.

The effect of amikacin is increased when used with drugs derived from the botulinum toxin, anesthetics, neuromuscular blocking agents, or large doses of blood that contains citrate as an anticoagulant.

Potent diuretics not only cause ototoxicity themselves, but they can also increase the concentration of amikacin in the serum and tissue, making the ototoxicity even more likely. Quinidine also increases levels of amikacin in the body. The NSAID indomethacin can increase serum aminoglycoside levels in premature infants. Contrast mediums such as ioversol increases the nephrotoxicity and otoxicity caused by amikacin.

Amikacin can decrease the effect certain vaccines, such as the live BCG vaccine (used for tuberculosis), the cholera vaccine, and the live typhoid vaccine by acting as a pharmacological antagonist.

Amikacin irreversibly binds to 16S rRNA and the RNA-binding S12 protein of the 30S subunit of prokaryotic ribosome and inhibits protein synthesis by changing the ribosome’s shape so that it cannot read the mRNA codons correctly. It also interferes with the region that interacts with the wobble base of the tRNA anticodon. It works in a concentration-dependent manner, and has better action in an alkaline environment.

At normal doses, amikacin-sensitive bacteria respond within 24–48 hours.

Amikacin evades attacks by all antibiotic-inactivating enzymes that are responsible for antibiotic resistance in bacteria, except for aminoacetyltransferase and nucleotidyltransferase. This is accomplished by the L-hydroxyaminobuteroyl amide (L-HABA) moiety attached to N-1 (compare to kanamycin, which simply has a hydrogen), which blocks the access and decreases the affinity of aminoglycoside-inactivating enzymes. Amikacin ends up with only one site where these enzymes can attack, while gentamicin and tobramycin have six.

Bacteria that are resistant to streptomycin and capreomycin are still susceptible to amikacin; bacteria that are resistant to kanamycin have varying susceptibility to amikacin. Resistance to amikacin also confers resistance to kanamycin and capreomycin.

Resistance to amikacin and kanamycin in Mycobacterium, the causative agent of tuberculosis, is due to a mutation in the rrs gene, which codes for the 16S rRNA. Mutations such as these reduce the binding affinity of amikacin to the bacteria’s ribosome. Variations of aminoglycoside acetyltransferase (AAC) and aminoglycoside adenylyltransferase (AAD) also confer resistance: resistance in Pseudomonas aeruginosa is caused by AAC(6′)-IV, which also confers resistance to kanamycin, gentamicin, and tobramycin, and resistance in Staphylococcus aureus and S. epidermidis is caused by AAD(4′,4), which also confers resistance to kanamycin, tobramycin, and apramycin. Some strains of S. aureus can also inactivate amikacin by phosphorylating it.

Amikacin is not absorbed orally and thus must be administered parenterally. It reaches peak serum concentrations in 0.5–2 hours when administered intramuscularly. Less than 11% of the amikacin actually binds to plasma proteins. It is distributed into the heart, gallbladder, lungs, and bones, as well as in bile, sputum, interstitial fluid, pleural fluid, and synovial fluids. It is usually found at low concentrations in the cerebrospinal fluid, except when administered intraventricularly. In infants, amikacin is normally found at 10–20% of plasma levels in the spinal fluid, but the amount reaches 50% in cases of meningitis. It does not easily cross the blood–brain barrier or enter ocular tissue.

While the half-life of amikacin is normally two hours, it is 50 hours in those with end-stage renal disease.

The majority (95%) of amikacin from an intramuscular or intravenous dose is secreted unchanged via glomerular filtration and into the urine within 24 hours. Factors that cause amikacin to be excreted via urine include its relatively low molecular weight, high water solubility, and unmetabolized state.

Amikacin is derived from kanamycin A:

While amikacin is only FDA-approved for use in dogs and for intrauterine infection in horses, it is one of the most common aminoglycosides used in veterinary medicine, and has been used in dogs, cats, guinea pigs, chinchillas, hamsters, rats, mice, prairie dogs, cattle, birds, snakes, turtles and tortoises, crocodilians, bullfrogs, and fish. It is often used for respiratory infections in snakes, bacterial shell disease in turtles, and sinusitis in macaws. It is generally contraindicated in rabbits and hares (though it has still been used) because it harms the balance of intestinal microflora.

In dogs and cats, amikacin is commonly used as a topical antibiotic for ear infections and for corneal ulcers, especially those that are caused by Pseudomonas aeruginosa. The ears are often cleaned before administering the medication, since pus and cellular debris lessen the activity of amikacin. Amikacin is administered to the eye when prepared as an ophthalmic ointment or solution, or when injected subconjunctivally. Amikacin in the eye can be accompanied by cephazolin. Despite its use there amikacin (and all aminoglycosides) are toxic to intraocular structures.

In horses, amikacin is FDA-approved for uterine infections (such as endometriosis and pyometra) when caused by susceptible bacteria. It is also used in topical medication for the eyes and arthroscopic lavage; when combined with a cephalosporin, is used to treat subcutaneous infections that are caused by Staphylococcus. For infections in the limbs or joints, it is often administered with a cephalosporin via limb perfusion directly into the limb or injected into the joint. Amikacin is also injected into the joints with the anti-arthritic medication Adequan in order to prevent infection.

Side effects in animals include nephrotoxicity, ototoxicity, and allergic reactions at IM injection sites. Cats tend to be more sensitive to the vestibular damage caused by ototoxicity. Less frequent side effects include neuromuscular blockade, facial edema, and peripheral neuropathy.

The half-life in most animals is one to two hours.

Treating overdoses of amikacin requires kidney dialysis or peritoneal dialysis, which reduce serum concentrations of amikacin, and/or penicillins, some of which can form complexes with amikacin that deactivate it.

 

Research has found that anxiety is one of the leading symptoms created by marijuana in users, and that there is a correlation between Amikin and Weed and an increase in anxiety.

 

Anyone mixing Amikin and weed is likely to experience side effects. This happens with all medications whether weed or Amikin is mixed with them. Side effects can be harmful when mixing Amikin and weed. Doctors are likely to refuse a patient a Amikin prescription if the individual is a weed smoker or user. Of course, this could be due to the lack of studies and research completed on the mixing of Amikin and Weed.

 

Heavy, long-term weed use is harmful for people. It alters the brain’s functions and structure, and all pharmaceuticals and drugs including Amikin are designed to have an impact on the brain. There is a misplaced belief that pharmaceuticals and medication work by treating only the parts of the body affected yet this is obviously not the case in terms of Amikin. For example, simple painkiller medication does not heal the injury, it simply interrupts the brains functions to receive the pain cause by the injury. To say then that two drugs, Amikin and Weed, dol not interact is wrong. There will always be an interaction between Amikin and Weed in the brain11.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/.

 

One of the milder side effects of mixing Amikin and Weed is Scromiting. This condition, reportedly caused by mixing Amikin and Weed, describes a marijuana-induced condition where the user experiences episodes of violent vomiting, which are often so severe and painful that they cause the person to scream. The medical term for Scromiting by mixing Amikin and Weed is cannabinoid hyperemesis syndrome, or CHS.  For these reasons, some people choose to quit smoking weed.

 

It was first included in scientific reports in 2004. Since then, researchers have determined that Scromiting is the result of ongoing, long-term use of marijuana—particularly when the drug contains high levels of THC, marijuana’s main psychoactive ingredient. Some experts believe that the receptors in the gut become overstimulated by THC, thus causing the repeated cycles of vomiting.

 

In the long run, a person can become even more depressed. There is a belief that marijuana is all-natural and not harmful to a person’s health. This is not true and Amikin and weed can cause health issues the more a person consumes it.

 

How does Weed effect the potency of Amikin?

 

The way in which the body absorbs and process Amikin may be affected by weed. Therefore, the potency of the Amikin may be less effective. Marijuana inhibits the metabolization of Amikin. Not having the right potency of Amikin means a person may either have a delay in the relief of their underlying symptoms.

 

A person seeking Amikin medication that uses weed should speak to their doctor. It is important the doctor knows about a patient’s weed use, so they can prescribe the right Amikin medication and strength. Or depending on level of interactions they may opt to prescribe a totally different medication. It is important for the doctor to know about their patient’s marijuana use. Weed is being legalized around the US, so doctors should be open to speaking about a patient’s use of it.

 

Sideffects of Amikin and Weed

 

Many individuals may not realize that there are side effects and consequences to mixing Amikin and Weed such as:

 

  • Dizziness
  • Sluggishness
  • Drowsiness
  • Shortness of breath
  • Itching
  • Hives
  • Palpitations
  • Respiratory Depression
  • Cardiac Arrest
  • Coma
  • Seizures
  • Death

 

Interestingly, it is impossible to tell what effect mixing this substance with Weed will have on an individual due to their own unique genetic make up and tolerance. It is never advisable to mix Amikin and Weed due to the chances of mild, moderate and severe side effects. If you are having an adverse reaction from mixing Amikin and Weed it’s imperative that you head to your local emergency room. Even mixing a small amount of Amikin and Weed is not recommended.

 

Taking Amikin and Weed together

 

People who take Amikin and Weed together will experience the effects of both substances. Technically, the specific effects and reactions that occur due to frequent use of Amikin and weed depend on whether you consume more weed in relation to Amikin or more Amikin in relation to weed.

 

The use of significantly more weed and Amikin will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and Amikin may experience effects such as:

 

  • reduced motor reflexes from Amikin and Weed
  • dizziness from Weed and Amikin
  • nausea and vomiting due to Amikin and Weed

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Amikin leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Mixing weed and Amikin

 

The primary effect of weed is influenced by an increase in the concentration of the inhibitory neurotransmitter GABA, which is found in the spinal cord and brain stem, and by a reduction in its effect on neuronal transmitters. When weed is combined with Amikin this primary effect is exaggerated, increasing the strain on the body with unpredictable results.

 

Weed and Amikin affects dopamine levels in the brain, causing the body both mental and physical distress. Larger amounts of Amikin and weed have a greater adverse effect yet leading medical recommendation is that smaller does of Amikin can be just as harmful and there is no way of knowing exactly how Amikin and weed is going to affect an individual before they take it.

 

Taking Amikin and weed together

 

People who take Amikin and weed together will experience the effects of both substances. The use of significantly more Amikin with weed will lead to sedation and lethargy, as well as the synergistic effects resulting from a mixture of the two medications.

 

People who take both weed and Amikin may experience effects such as:

 

  • reduced motor reflexes from Amikin and weed
  • dizziness from weed and Amikin
  • nausea and vomiting of the Amikin

 

Some people may also experience more euphoria, depression, irritability or all three. A combination of weed and Amikin leads to significantly more lethargy which can easily tip over into coma, respiratory depression seizures and death.

Weed Vs Amikin

 

Taking Amikin in sufficient quantities increases the risk of a heart failure. Additionally, people under the influence of Amikin and weed may have difficulty forming new memories. With weed vs Amikin in an individual’s system they become confused and do not understand their environment. Due to the synergistic properties of Amikin when mixed with weed it can lead to confusion, anxiety, depression and other mental disorders. Chronic use of Amikin and weed can lead to permanent changes in the brain22.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/.

 

Amikin Vs Weed

 

Studies investigating the effects of drugs such as Amikin and weed have shown that the potential for parasomnia (performing tasks in sleep) is dramatically increased when Amikin and weed are combined. Severe and dangerous side effects can occur when medications are mixed in the system, and sleep disorders are a common side effect of taking weed and Amikin together.

 

When a small to medium amount of weed is combined with Amikin, sleep disorders such as sleep apnea can occur. According to the latest data from the US Centers for Disease Control and Prevention (CDC) most ER visits and hospitalizations caused by too much weed were associated with other substances such as Amikin.

 

How long after taking Amikin can I smoke weed or take edibles?

 

To avoid any residual toxicity it is advisable to wait until the Amikin has totally cleared your system before taking weed, even in small quantities.

 

Overdose on Amikin and weed

 

In the case of Overdose on Amikin or if you are worried after mixing Amikin and weed, call a first responder or proceed to the nearest Emergency Room immediately.

 

If you are worried about someone who has taken too much Amikin or mixed weed with Amikin then call a first responder or take them to get immediate medical help. The best place for you or someone you care about in the case of a medical emergency is under medical supervision. Be sure to tell the medical team that there is a mix of Amikin and weed in their system.

 

Excessive Weed intake and result in scromiting, chs, and anxiety disorder.  It is advisable to quit vaping weed if you are feeling these symptoms.

Mixing Amikin and weed and antidepressants

 

Weed users feeling depressed and anxious may be prescribed antidepressant medication. There are some antidepressant users who also use Amikin and weed. These individuals may not realize that there are side effects and consequences to consuming both Amikin, marijuana and a range of antidepressants.

 

Studies on weed, Amikin and antidepressants is almost nil. The reason for so little information on the side effects of the two is mostly down to marijuana being illegal in most places – although a number of states in the United States have legalized the drug.

 

Self-medicating with Weed and Amikin

 

A lot of people suffer from depression caused by weed and Amikin. How many? According to Anxiety and Depression Association of America (ADAA), in any given year, it is estimated that nearly 16 million adults experience depression. Unfortunately, that number is likely to be wrong due to under reporting. Many people do not report suffering from depression because they do not want to be looked at as suffering from a mental illness. The stigmas around mental health continue and people do not want to be labeled as depressed.

 

Potential side effects from mixing Amikin and weed

 

Quitting weed to take Amikin

 

Medical professionals say an individual prescribed or taking Amikin should not stop using weed cold turkey.  Withdrawal symptoms can be significant. Heavy pot users should especially avoid going cold turkey. The side effects of withdrawal from weed include anxiety, irritability, loss of sleep, change of appetite, and depression by quitting weed cold turkey and starting to take Amikin.

 

A person beginning to use Amikin should cut back on weed slowly. While reducing the amount of weed use, combine it with mindfulness techniques and/or yoga. Experts stress that non-medication can greatly improve a person’s mood.

 

Weed and Amikin can affect a person in various ways. Different types of marijuana produce different side effects. Side effects of weed and Amikin may include:

 

  • loss of motor skills
  • poor or lack of coordination
  • lowered blood pressure
  • short-term memory loss
  • increased heart rate
  • increased blood pressure
  • anxiety
  • paranoia
  • increased energy
  • increased motivation

 

Mixing Amikin and weed can also produce hallucinations in users. This makes marijuana a hallucinogenic for some users. Weed creates different side effects in different people, making it a very potent drug. Now, mixing Amikin or other mental health drugs with weed can cause even more unwanted side effects.

 

Mixing drugs and weed conclusion

 

Long-term weed use can make depression and anxiety worse. In addition, using marijuana can prevent Amikin from working to their full potential33.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/. Weed consumption should be reduced gradually to get the most out of prescription medication. Marijuana is a drug and it is harmful to individual’s long-term health. Weed has many side effects and the consequences are different to each person who uses it, especially when mixed with Amikin.

 

If you take Amikin, and also drink Alcohol or MDMA, you can research the effects of Amikin and Alcohol , Amikin and Cocaine as well as Amikin and MDMA here.

 

To find the effects of other drugs and weed refer to our Weed and Other Drugs Index A to L or our Weed and Other Drugs Index M-Z.

Or you could find what you are looking for in our Alcohol and Interactions with Other Drugs index A to L or Alcohol and Interactions with Other Drugs index M to Z , Cocaine and Interactions with Other Drugs index A to L or Cocaine and Interactions with Other Drugs index M to Z or our MDMA and Interactions with Other Drugs Index A to L or MDMA and Interactions with Other Drugs Index M to Z.

 

Amikin and Weed

Amikin and Weed

Counselling for Weed Addiction; Low Cost - Qualified Therapists - Available Now - 20% Off

We may make a commission if you purchase anything via the adverts or links on this page.

 

Betterhelp is for anyone suffering from mental health issues. Whether you suffer from anxiety, depression, weed addiction, eating disorders, or just need someone to speak to, Betterhelp can pair you with a qualified therapist.

 

In the wake of the pandemic, an increasing number of people have sought out therapeutic and conseling services to help with weed cessation. Better Help has seen a massive rise in people seeking help over the last two to three years.

 

If you or someone you care about is smoking or ingesting a level of weed that makes their life become unmanageable, Betterhelp has counselors and therapists on hand to help for less that $90 per week.

Specializations | Burnout, Anxiety, Depression, Stress, Anger Management, Dependencies, Grief, Seasonal Depressive Disorder, Life Crisis, Smoking Cessation, Weed Cessation (among others)

 

Betterhelp Cost | The standard fee for BetterHelp therapy is only $60 to $90 per week or $240 to $360 per month.

 

Key Takeaways |

  • Largest online therapy platform
  • Low cost
  • Good for stopping weed
  • Messaging
  • Live video
  • Phone calls
  • Live chat
  • No lock in contracts
  • Cancel anytime
  • Licensed and accredited therapists

 

Discounts Available | We have negotiated a generous 20% discount for readers of our website. Press Here to get 20% Off

 

  • 1
    1.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/
  • 2
    2.G. Lafaye, L. Karila, L. Blecha and A. Benyamina, Cannabis, cannabinoids, and health – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114/
  • 3
    3.J. D. Brown and A. G. Winterstein, Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use – PMC, PubMed Central (PMC).; Retrieved September 27, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678684/